

BIOLOGICALLY-INSPIRED
COLLABORATIVE COMPUTING

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

COLLABORATIVE COMPUTING

IFIP 20th World Computer Congress, Second IFIP
TC 10 International Conference on Biologically-
Inspired Collaborative Computing, September 8-9,
2008, Milano, Italy

Edited by

Mike Hinchey
Lero-the Irish Software Engineering Research Center
University of Limerick
Ireland

Anastasia Pagnoni
Università degli Studi di Milano
Italy

Franz J. Rammig
Universität Paderborn
Germany

Hartmut Schmeck
Karlsruhe Institute of Technology
Germany

BIOLOGICALLY-INSPIRED

Library of Congress Control Number: 2008928946

Biologically-Inspired Collaborative Computing

Edited by Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig

and Hartmut Schmeck

p. cm. (IFIP International Federation for Information Processing, a Springer Series
in Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)

 ISBN: 978-0-387-09654-4
 eISBN: 978-0-387-09655-1

Printed on acid-free paper

Copyright 2008 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

IFIP 2008 World Computer Congress
(WCC’08)

Message from the Chairs

Every two years, the International Federation for Information Processing hosts a
major event which showcases the scientific endeavours of its over one hundred
Technical Committees and Working Groups. 2008 sees the 20th World Computer
Congress (WCC 2008) take place for the first time in Italy, in Milan from 7-10
September 2008, at the MIC - Milano Convention Centre. The Congress is hosted
by the Italian Computer Society, AICA, under the chairmanship of Giulio Occhini.

The Congress runs as a federation of co-located conferences offered by the
different IFIP bodies, under the chairmanship of the scientific chair, Judith Bishop.
For this Congress, we have a larger than usual number of thirteen conferences,
ranging from Theoretical Computer Science, to Open Source Systems, to
Entertainment Computing. Some of these are established conferences that run
each year and some represent new, breaking areas of computing. Each conference
had a call for papers, an International Programme Committee of experts and a
thorough peer reviewed process. The Congress received 661 papers for the
thirteen conferences, and selected 375 from those representing an acceptance rate
of 56% (averaged over all conferences).

An innovative feature of WCC 2008 is the setting aside of two hours each day for
cross-sessions relating to the integration of business and research, featuring the use
of IT in Italian industry, sport, fashion and so on. This part is organized by Ivo De
Lotto. The Congress will be opened by representatives from government bodies
and Societies associated with IT in Italy.

This volume is one of fourteen volumes associated with the scientific conferences
and the industry sessions. Each covers a specific topic and separately or together
they form a valuable record of the state of computing research in the world in
2008. Each volume was prepared for publication in the Springer IFIP Series by
the conference’s volume editors. The overall Chair for all the volumes published
for the Congress is John Impagliazzo.

For full details on the Congress, refer to the webpage http://www.wcc2008.org.

Judith Bishop, South Africa, Co-Chair, International Program Committee
Ivo De Lotto, Italy, Co-Chair, International Program Committee
Giulio Occhini, Italy, Chair, Organizing Committee
John Impagliazzo, United States, Publications Chair

WCC 2008 Scientific Conferences

TC12 AI Artificial Intelligence 2008

TC10 BICC Biologically Inspired Cooperative Computing

WG 5.4 CAI Computer-Aided Innovation (Topical Session)

WG 10.2 DIPES Distributed and Parallel Embedded Systems

TC14 ECS Entertainment Computing Symposium

TC3 ED_L2L Learning to Live in the Knowledge Society

WG 9.7
TC3

HCE3 History of Computing and Education 3

TC13 HCI Human Computer Interaction

TC8 ISREP Information Systems Research, Education and
Practice

WG 12.6 KMIA Knowledge Management in Action

TC2
WG 2.13

OSS Open Source Systems

TC11 IFIP SEC Information Security Conference

TC1 TCS Theoretical Computer Science

IFIP
 is the leading multinational, apolitical organization in Information and
Communications Technologies and Sciences

 is recognized by United Nations and other world bodies
 represents IT Societies from 56 countries or regions, covering all 5 continents
with a total membership of over half a million

 links more than 3500 scientists from Academia and Industry, organized in more
than 101 Working Groups reporting to 13 Technical Committees

 sponsors 100 conferences yearly providing unparalleled coverage from
theoretical informatics to the relationship between informatics and society
including hardware and software technologies, and networked information
systems

Details of the IFIP Technical Committees and Working Groups
can be found on the website at http://www.ifip.org.

Preface

Albert Einstein.
In recent years, the research communities in Computer Science, Engineering, and

other disciplines have taken this message to heart, and a relatively new field of
“biologically-inspired computing” has been born. Inspiration is being drawn from
nature, from the behaviors of colonies of ants, of swarms of bees and even the human
body. This new paradigm in computing takes many simple autonomous objects or
agents and lets them jointly perform a complex task, without having the need for
centralized control. In this paradigm, these simple objects interact locally with their
environment using simple rules. Applications include optimization algorithms,
communications networks, scheduling and decision making, supply-chain
management, and robotics, to name just a few.

There are many disciplines involved in making such systems work: from
artificial intelligence to energy aware systems. Often these disciplines have their own
field of focus, have their own conferences, or only deal with specialized sub-
problems (e.g. swarm intelligence, biologically inspired computation, sensor
networks). The Second IFIP Conference on Biologically-Inspired Collaborative
Computing aims to bridge this separation of the scientific community and bring
together researchers in the fields of Organic Computing, Autonomic Computing,
Self-Organizing Systems, Pervasive Computing and related areas.

We are very pleased to have two very important keynote presentations:

 Swarm Robotics: The Coordination of Robots via Swarm Intelligence

Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of
which an abstract is included in this volume.

 Immuno-engineering by Jon Timmis and his collaborators at University of
York, UK (full paper included in this volume).

The contributions to the program of this conference have been selected from
submissions originating from North and South America, Asia, Europe and Australia.
We would like to thank the members of the program committee for the careful
reviewing of all submissions, which formed the basis for selecting this attractive
program. We are grateful to IFIP and in particular IFIP TC-10 for their support.

We welcome all participants of this Second IFIP Conference on Biologically-
Inspired Collaborative Computing—BICC 2008—and look forward to an inspiring
series of talks and discussions, part of a range of excellent conferences in the IFIP
World Computer Conference 2008.

 Franz J.Rammig (Germany) Hartmut Schmeck (Germany)
 Anastasia Pagnoni (Italy) Mike Hinchey (Ireland)
 (Conference Co-Chairs) (Program Co-Chairs)

“Look deep into nature and you will understand everything better.” advised

Program Committee

Jürgen Branke, University of Karlsruhe, Germany
Sven Brueckner, New Vectors LLC, USA
Yuan-Shun Dai, University of Tennessee at Knoxville, USA
Giovanna Di Marzo Serugendo, University of London, UK
Marco Dorigo, IRIDIA, Université Libre de Bruxelles, Belgium
Luca Maria Gambardella, IDSIA, Switzerland
Xiaodong Li, Royal Melbourne Institute of Technology, Australia
Peter Lindsay, University of Queensland, Australia
Tiziana Margaria, University of Potsdam, Germany
Eliane Martins, UNICAMP, Brazil
Christian Müller-Schloer, Universität Hannover, Germany
Roy A. Maxion, Carnegie Mellon University, USA
Takashi Nanya, RCAST, University of Tokyo, Japan
Bernhard Nebel, Albert-Ludwigs-Universität Freiburg, Germany
Jochen Pfalzgraf, Universität Salzburg, Austria
Daniel Polani, University of Hertfordshire, UK
Ricardo Reis, Universidade Federal do Rio Grande do Sul, Brazil
Richard D. Schlichting, AT&T Labs, USA
Bernhard Sendhoff, Honda Research Institute, Germany
Henk Sips, Delft University of Technology, The Netherlands
Leslie Smith, University of Stirling, UK
Albert Y. Zomaya, University of Sydney, Australia

Additional Reviewers
Marco Bakera, University of Dortmund, Germany
Sven Jörges, University of Dortmund, Germany
Georg Jung, University of Potsdam, Germany
Lukas König, University of Karlsruhe, Germany
Carlo Pinciroli, Université Libre de Bruxelles, Belgium
Clemens Renner, University of Dortmund, Germany

Contents

Keynote Presentations
1. Swarm Robotics: The Coordination of Robots via

Marco Dorigo
2.

Jon Timmis, Emma Hart, Andy Hone, Mark Neal, Adrian Robins,
Susan Stepney and Andy Tyrrell

Inspiration Based on Insect Behaviors
3. Heuristics for Uninformed Search Algorithms in Unstructured

 Prithviraj Dasgupta and Erik Antonson

 Alexander Scheidler, Daniel Merkle and Martin Middendorf
5. Resource-Aware Clustering of Wireless Sensor Networks

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

Sensors, Actuators and Networks
6.

7. Experiments with Biologically-Inspired Methods for

Robotics and Multi-Agent Systems

Lukas König and Hartmut Schmeck

Friedhelm Meyer auf der Heide and Barbara Schneider

and Philipp Adelt
11. Distributed Fault-Tolerant Robot Control Architecture Based on

Adam El Sayed Auf, Marek Litza and Erik Maehle

 Swarm Intelligence Principles..1

Immuno-engineering……..............……………………………….3

4. Congestion Control in Ant Like Moving Agent Systems …….…….. 33

Based on Division of Labor in Social Insects …………………….... 45

Self-Stabilizing Automata ………………………….…….………... 59

Service Assignment in Wireless Sensor Networks ……………….... 71

8. Evolving Collision Avoidance on Autonomous Robots …………… 85

 Organic Computing Principles ……………………………………. 115

 P2P Networks Inspired by Self-Organizing Social Insect Models .…19

Torben Weis and Arno Wacker

Tales Heimfarth and Peter Janacik

9. Local Strategies for Connecting Stations by Small Robotic Networks ... 95

 for Imitation in a Group of Heterogeneous Robots …….…………. 105
10. Measurement of Robot Similarity to Determine the Best Demonstrator

Raphael Golombek, Willi Richert, Bernd Kleinjohann

xii

Immunocomputing and Biological-Inspiration
12. Intrusion Detection via Artificial Immune System:

Andrea Visconti, Nicoló Fusi and Hooman Tahayori

Norma Montealegre, Franz J. Rammig
14. An Organic Computing Approach to Sustained

Rainer Buchty, David Kramer and Wolfgang Karl

Applications

Xu Gu and Maciej Trybilo
16. Image Segmentation by a Network of Cortical Macrocolumns with

Markus Lessman and Rolf P. Würtz
17. Integrating Emotional Competence into Man-Machine

Hardware Issues

Wolfgang Trumler, Sebastian Schlingmann, Theo Ungerer,

Collaboration

Rumen Andreev

Willi Richert, Oliver Niehörster and Florian Klompmaker

A Performance-based Approach ………… ………………..….…. 125

13. Immuno-repairing of FPGA designs …………………………….... 137

Real-time Monitoring …………………………………………...… 151

15. A Case Study in Model-driven Synthetic Biology ……………..…. 163

Learned Connection Weights ……………………………………… 177

 Collaboration ………………………………………………….….. 187

18. Self-optimized Routing in a Network-on-a-Chip …………………. 199

19. On Robust Evolution of Digital Hardware ……………………….. 213
Tobias Knieper, Bertrand Defo, Paul Kaufmann
and Marco Platzner

Author Index ……………………………………………………….… 245

Contents

David Gilbert, Monika Heiner, Susan Rosser, Rachael Fulton,

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

Jun Ho Bahn and Nader Bagherzadeh

21. Guiding Exploration by Combining Individual Learning and

20. A Model of Self-Organizing Collaboration ………….……….….. 223

 Imitation in Societies of Autonomous Robots …………..…..……... 233

Swarm Robotics: The Coordination of Robots
via Swarm Intelligence Principles

Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles

Abstract: Swarm intelligence is the discipline that deals with natural and
artificial systems composed of many individuals that coordinate using
decentralized control and self-organization. The discipline focuses
on the collective behaviors that result from the local interactions
of the individuals with each other and with their environment.
Examples of systems studied by swarm intelligence are colonies of
ants and termites, schools of fish, and flocks of birds. Some human
artifacts also fall into the domain of swarm intelligence. Examples
are, among others, some multi-robot systems and certain computer
programs tackling optimization and data analysis problems.

After a short introduction to swarm intelligence, in my presentation
I will focus on recent work in swarm robotics, that is, the
application of swarm intelligence principles to the control of swarms
of cooperating robots. In particular, I will present results of the
swarm-bot experiment. A swarm-bot is an artifact composed of a swarm
of assembled s-bots, mobile robots capable of connecting to, and
disconnecting from, each other. In the swarm-bot form, the s-bots are
attached to each other and, when needed, become a single robotic
system that can move and change its shape. S-bots have relatively
simple sensors and motors and limited computational capabilities. A
swarm-bot can solve problems that cannot be solved by s-bots alone.

In the talk, I will briefly describe the s-bots hardware and the
methodology followed to develop algorithms for their control. Then I
will focus on the capabilities of the swarm-bot robotic system by
showing video recordings of some of the many experiments we performed
to study coordinated movement, path formation, self-assembly,
collective transport, shape formation, and other collective behaviors.

Please use the following format when citing this chapter:

Dorigo, M., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-Inspired Collaborative
Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston: Springer), p. 1.

Immuno-engineering

Jon Timmis1, Emma Hart3, Andy Hone4, Mark Neal5 Adrian Robins6, Susan
Stepney1, and Andy Tyrrell2

Abstract In this position paper, we outline a vision for a new type of engineering:
immuno-engineering, that can be used for the development of biologically grounded
and theoretically understood Artificial Immune Systems (AIS). We argue that, like
many bio-inspired paradigms, AIS have drifted somewhat away from the source of
inspiration. We also argue that through an interdisciplinary approach, it is possible
to exploit the underlying biology for computation in a way that, as yet, has not been
achieved. Immuno-engineering will not only allow for the potential development of
more powerful AIS, but allow for feed back to biology from computation.

1 Introduction

Advances in technology today enable the construction of complex autonomous sys-
tems, which can range in size from a robot, perhaps containing tens of simple de-
vices, to mobile, ad–hoc networks containing thousands of such devices. At both
extremes, such systems consist of unreliable heterogeneous sensors and actuators
which must make decisions across multiple timescales in unpredictable, and poten-
tially hostile, dynamic environments in order to maintain their integrity and achieve
their desired functionality. Current technology allows us to hard-wire responses to
foreseeable situations; a considerable void is still to be crossed however to achieve
systems which adapt continuously and autonomously to their environments and ex-
hibit what is becoming known as self-CHOP characteristics; self-configure, self-
heal, self-optimize and self-protect. A paradigm shift in engineering is required to
address this; we propose that a new discipline that will allow for the construction

Department of Computer Science, University of York, York. UK e-mail: jtimmis@cs.york.ac.uk ·
Department of Electronics, University of York, York. UK · School of Computing, Napier Univer-
sity, Edinburgh, UK · Institute of Mathematics, Statistics and Actuarial Science, University of Kent,
Canterbury, Kent. UK · Department of Computer Science, Aberystwyth University, Aberystwyth,
UK · University of Nottingham Medical School, Nottingham, UK

Please use the following format when citing this chapter:

Information Processing, Volume 268; Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz
J. Rammig, Hartmut Schmeck; (Boston: Springer), pp. 3–17.

Timmis, J., Hart, E., Hone, A., Neal, M., Robins, A., Stepney, S. and Tyrrell, A., 2008, in IFIP International Federation for

Timmis, J. et al.

of engineered artefacts that are fit for purpose in the same way as their biological
counterparts needs to be developed.

Our long-term aim is to develop the foundations for a new kind of engineering –
immuno-engineering – exploiting principles derived from the human immune sys-
tem to enable the engineering of robust complex artefacts.

In this position paper we outline the concept of Immuno-engineering and discuss
it’s motivation in the context of current Artificial Immune System (AIS) research,
and we hint at the way in which such a discipline may be developed.

We propose a bottom-up approach to the engineering of such systems, which
will result in a set of immuno-engineering principles; these can be generalised to
the future development of a wide range of bio-inspired, autonomic systems. This
is achieved via an interdisciplinary approach which cuts across immunology, math-
ematics, computer science and engineering. In a recent paper [1] we discuss the
interdisciplinary nature of AIS research. Our vision is inspired by recent work in
immunology which attempts to reposition the immune system away from a pure de-
fence mechanism to a complex, self-organising computational system, which com-
putes the state of the body and then responds to it in order to achieve host main-
tenance and protection [2]. Autonomic systems which operate in a dynamic and
information rich environment need to compute their state and then respond in an
analogous way if they are to remain operational in order to continuously deliver the
services expected of them.

2 Exploiting Immunology for Computation

Artificial Immune Systems (AIS) [3] is a diverse area of research that attempts to
bridge the divide between immunology and engineering and are developed through
the application of techniques such as mathematical and computational modeling of
immunology, abstraction from those models into algorithm (and system) design and
implementation in the context of engineering. Many early attempts to apply im-
munological inspiration to engineering began with efforts to mimic the perceived
role of the natural immune system as a mechanism for identifying and then elimi-
nating harmful pathogens from the body in a computer intrusion detection system
[4]. However, work previous to this explored the immune system for inspiration in
fault diagnosis [5] and control [6]. These investigations sparked a host of attempts
to apply aspects of immunology to a wider range of engineering problems, and the
reader is referred to the International Conference on Artificial Immune Systems
(ICARIS) for a comprehensive collection of papers [7, 8, 9, 10, 11, 12]. Over recent
years there have been a number of review papers written on AIS with the first being
[13] followed by a series of others that either review AIS in general, for example,
[14, 15, 16, 17, 18], or more specific aspects of AIS such as data mining [19], net-
work security [20], applications of AIS [21], theoretical aspects [22] and modelling
in AIS [23].

4

Immuno-engineering

However, despite the many successes of the immune inspired approach we claim
that the real potential of the approach has yet to be met [18]. We claim that this
results from two limitations in the approach taken. Firstly, all of these applications
have cherry picked one (or occasionally a few) features of the vertebrate immune
system and attempted to apply them in isolation. Thus, we observe algorithms based
on clonal selection e.g. [24], on negative selection [25], on idiotypic networks [26]
and dendritic cells [27] with many recent developments in AIS being based around
one of these four types of algorithms. Moreover, almost without exception there has
been a tendency to exploit only the adaptive component of the vertebrate immune
system. It is clear from immunological studies that the innate and adaptive compo-
nents operate in tandem, and furthermore, regulate each other’s effects. Therefore,
by selecting only individual components of a complex, interacting system, a huge
opportunity to exploit the true potential of the metaphor is being missed. Secondly,
the focus on individual applications has followed an approach common to much
bio-inspired research: an algorithm is designed and tuned empirically to a partic-
ular problem, thereby making it difficult to generalise any principles applicable to
other applications. The EPSRC “Danger Theory” project1, the outlines of which
were proposed in [28] was the first attempt to combine current immunological ex-
perimentation with computational research. However, even it has focussed on a sin-
gle application (intrusion detection [20]) and a single aspect of the immune system
(danger theory) [27, 29, 30, 31]. Whilst this research has provided significant de-
velopments in the area of intrusion detection, we feel that for the area of AIS to
progress we need to find more general principles that are applicable in a range of
application areas. It should be noted that it is not feasible to capture the whole im-
mune system in a single application, the sheer complexity would be overwhelming,
however a focus on higher-level key properties, such as multiple-timescales of re-
sponse, of the innate and adaptive components, may prove useful in their generic
applicability to engineering.

Based on these observations, we feel the time is ripe for a step change in the
development of AIS, through a principled engineering approach. We now discuss
such an approach.

3 Defining Immuno-engineering

We follow Orosz’s definitions of ‘immuno-ecology’ and ‘immuno-informatics’
[32]:

immuno-ecology : “the study of immunological principles that permit effective
immunological function within the context of the immensely complex immuno-
logical network . . . the principles serve mainly to provide an infrastructure for the
immune system.”

1 http://www.dangertheory.com/

5

Timmis, J. et al.

immuno-informatics : “the study of the immune system as a cognitive, decision-
making device . . . addresses mechanisms by which the immune system converts
stimuli into information, how it processes and communicates that information,
and how the information is used to promote an effective immuno-ecology . . . how
the immune system generates, posts, processes, and stores information about it-
self and its environment”

and so we now define:

principles, and their adaptation and application to engineered artefacts (compris-
ing hardware and software), so as to provide these artefacts with properties anal-
ogous to those provided to organisms by their natural immune systems.

Immuno-engineering takes into account the differences between artificial sys-
tems and biological systems: for example, the different numbers, kinds, and rates
of signals that need to be monitored and processed; the different kinds of decisions
that need to be made; the different effectors available to support and implement
those decisions; and the different constraints of embodiment, either physically or
virtually engineered. For example, Orosz [32] hypothesises that the major design
features of the biological immune system that provides speed, flexibility and mul-
tiple response options rely on a parallel-processing system which has ‘wasteful’
use of resources, countless back-up systems, and requires the ability to immedi-
ately and continuously monitor physical sites. This is of enormous consequence to
the engineer, who is constrained by processing speeds, communication overheads,
and physical resources, and furthermore hindered by hardware requirements such
as transmitting signals from sensors, but who can freely make numerous copies of
software agents, subject only to storage constraints.

3.1 A Conceptual Framework for the Development of
Immuno-engineering

In their paper, Stepney et al. [33] propose that bio-inspired algorithms, such as AIS,
are best developed in a more principled way than was currently being undertaken
in the literature. To clarify, the authors suggested that many AIS recently devel-
oped had drifted away from the immunological inspiration that had fueled their
development and that AIS practitioners were failing to capture the complexity and
richness that the immune system offers. In order to remedy this, the authors sug-
gest a conceptual framework for developing bio-inspired algorithms within a more
principled framework that attempts to capture biological richness and complexity
but, at the same time, appreciate the need for sound engineered systems that need to
work. This should avoid the “reasoning by metaphor” approach often seen in bio-
inspired computing whereby algorithms are just a weak analogy of the process on
which they are based, being developed directly from (often naive) biological mod-
els and observations. One of the main problems involved in designing bio-inspired

6

immuno-engineering: the abstraction of immuno-ecological and immuno-informatics

Immuno-engineering

algorithms is deciding which aspects of the biology are necessary to generate the
required behaviour and which aspects are surplus to requirements. Thus, the con-
ceptual framework takes an interdisciplinary approach, involving the design of AIS
through a series of observational and modelling stages in order to identify the key
characteristics of the immunological process on which the AIS will be based. The
first stage of the conceptual framework, as outlined in figure 1, aims to probe the
biology, utilising biological observations and experiments to provide a partial view
of the biological system from which inspiration is being taken. This view is used to
build abstract models of the biology. These models can be both mathematical and
computational, and are open to validation techniques not available to the actual bi-
ological system. From the execution of the models and their validation, insight can
be gained into the underlying biological process. It is this insight that leads to the
construction of the bio-inspired algorithms. This whole process is iterative, and can
also lead to the construction of computational frameworks that provide a suitable
structure for specific application-oriented algorithms to be designed from.

Fig. 1 The Conceptual Framework [33]. This can be seen as a methodology to develop novel AIS
allowing true interaction between disciples where all can benefit, and, a way of thinking about the
scope of AIS and how that has broadened over the years once again

As noted by Stepney et al. [33] each step in the standard conceptual framework
is biased, be it modelling some particular biology mechanism or designing an al-
gorithm for which there is an intended end product or specific concept. The first
instantiations of the conceptual framework will produce models specific to certain
biological systems and algorithms for solutions to specific problems. One could at-
tempt to produce a computational framework based on some biology without a par-
ticular end algorithm/application in mind, that is examining biology and hoping to
come across something applicable to a generic computational problem. This, how-
ever, would seem to be a very difficult task and one has to ground the development
of AIS in some form of application at some point. Therefore, it is far easier to orient
these steps toward some particular problem giving necessary focus to the modelling
work [34].

7

Timmis, J. et al.

4 Towards Immuno-engineering

From an engineering perspective, there is a need to design, develop and implement
design libraries derived from the immuno-engineering principles, tested in diverse
practical exemplars ranging from a self-contained and self-maintaining piece of
hardware, such as a network switch that reduces downtime and error-propagation
on the internet, to a ubiquitous sensing system with reliable message passing that
could be embedded into buildings resulting in a system that could rapidly detect
and localise survivors following building collapse. From a biological perspective,
by focussing on the immune system as a computational system we will deliver a
framework in which it is possible to reframe experimental immunological data and
ask new experimental questions. For example, we might ask how the state of a de-
veloping tumor can influence the state of the tissues and therefore how can we in-
duce the immune system to compute this state as abnormal. Recent work in [2] has
developed the notion of the “computation of the state” of the immune system: as
stated earlier, an immuno-engineering approach should take this into account. Such
an interdisciplinary endeavor will thus potentially impact on the understanding of
disorders of immune activity such as autoimmune diseases and cancer.

To provide this bridge between immunology and engineering, there is a potential
need to utilise state-based modelling techniques which fit well with a computational
view of the systems. On the one hand, these will provide a realistic and intuitive
environment for immunologists to complement traditional mathematic modelling
such as differential equations and, on the other, they can be readily transformed
into engineering solutions. One such approach is the π-calculus [35]. This is a for-
mal language used to specify concurrent computational systems. Its defining feature
that sets it apart from other process calculi is the possibility of expressing mobil-
ity. This allows processes to “move” by dynamically changing their channels of
communication with other processes, thus one can model networks that reconfig-
ure themselves. The π-calculus allows composition, choice, and restriction of pro-
cesses which communicate on potentially private complementary channels. There is
a growing similarity between the parallelism and complexity of computer systems
today and biological systems. As noted by [36] computational analysis tools such
as the π-calculus are just as applicable to biology as they are to computing.

4.1 What do we need to do for Immuno-engineering?

The properties we wish to endow on engineered systems are currently exhibited
only by those complex living systems whose immune systems comprise an innate
component which endows the host with rapid pre-programmed responses and an
adaptive component which is capable of learning through experience. Much of the
desired functionality of the system arises from the interplay between these subsys-
tems and the regulatory effect they have on each other. Together, these operate over
multiple timescales, from seconds to the entire lifetime of the organism. Therefore,

8

Immuno-engineering

the modelling of both innate and adaptive components, paying particular attention
to the interface between them, enables us to push the boundaries of biologically
inspired computing and engineering.

In order to achieve our aim of laying the foundations for immuno-engineering, a
number of key objectives need to be achieved:

1. derive mathematical models of the interplay between the innate and adaptive
immune systems

2. develop and verify computational models that capture the interplay of innate and
adaptive immunity

3. implement an immuno-engineering design and implementation library
4. develop and assess immuno-engineering insights to inform modulation of the

natural immune system
5. deploy and evaluate the immuno-engineering library in a diverse set of case

studies

5 Instantiating Immuno-engineering

In order to develop the Immuno-engineering approach a combination of the concep-
tual framework [33] and the problem-oriented perspective [34] can be adopted and
requires interactions between computation, mathematical analysis, practical imple-
mentation, and biological experimentation. These will be rooted in the conceptual
framework [33], which formulates the principled abstraction of bio-inspired algo-
rithms through a process of mathematical modelling, computational modelling, and
algorithm development for application domains, and makes use of the problem-
oriented perspective [34] through the use of case studies to develop and refine the
Immuno-engineering libraries.

Work should be based on a combination of mathematical and computational
modelling, which leads to the development of an immuno-engineering library. This
library should be tested on a number of carefully selected, realistic and diverse case
studies that exhibit a broad and diverse spectrum of engineering features, thus al-
lowing for the refinement of the approach. The library should thus be exercised in
various different forms (in hardware or software, in open or closed environments),
and therefore be tested and evaluated. Such suitable case studies might include web-
mining, condition-monitoring and distributed sensing, in line with suggestions for
future applications of AIS [21] which emphasises the notion of dynamic, life-long
learning and homeostasis. In addition, elements of our immuno-engineering library
should be used to computationally model aspects of the human immune system,
which will help inform in vitro experiments: hence, all disciplines in this endeavor
will benefit from the whole approach.

Figure 2 illustrates the interdisciplinary nature of the work. In order to develop
the Immuno-engineering approach we would advocate focussing on the develop-

9

ment of mathematical models of interactions between the i nnate and adaptive

Timmis, J. et al.

theoretical immunology and mathematics). Once mathematical models have been
developed, we can proceed to develop computational models from them: this will
lay the foundation for developing immuno-engineering and develop an immuno-
engineering library. This library will bridge the gap between experimental im-
munology and engineering, thus breaking the mould of typical biologically inspired
computing, which simply jumps from simplistic views of biological systems straight
to simplistic engineered solutions, in line with the approach advocated in [33]. With
the adoption of this method, it should be possible to generate a set of mathematically
sound, biologically grounded techniques applicable to engineering. In addition, the
library will drive further investigations into experimental immunology.

5.1 Modelling and Immuno-Ecology

Modelling provides us with a fundamental insight into the workings of the im-
mune system. Inherent in our proposal is the desire to gain a detailed understanding
of immunological principles which will ultimately lead to the development of the
immuno-engineering library. Modelling affords us the opportunity to investigate a
complex system from different perspectives: from the level of individual compo-
nents (molecules and cells), to the level of populations of cells, to an overall sys-
tems level. For the modelling, a wide variety of options are open, all with their
own advantages and disadvantages [23] such as dynamical systems, optimal con-
trol theory, information and coding, probability, stochastic π-calculus and complex
network theory.

10

immune systems, capturing the essentials of immuno-ecology (the interaction between

which itself acts as the bridge between experimental immunology and engineering
Fig. 2 Interactions between disciplines that leads to the development of immuno-engineering

Immuno-engineering

5.1.1 Modelling of Information Processing

A central part of the interaction between the innate and adaptive immune system is
the process by which antigen is recognised. In order to derive mathematical mod-
els of antigen processing, one could adopt an information-theoretic approach to the
identification of antigens, regarding them as salient chunks of data to be processed
by the immune system. Antigens usually take the form of proteins which are recog-
nized as being “foreign” by the immune system, and, for this recognition to occur,
suitable features of the structure and composition of the protein must first be iso-
lated. The latter is achieved by immune cell receptors which bind to specific chunks
of the antigen. Regarding proteins as streams of data will enable the use of informa-
tion theory to model the processing of such data.

Having obtained an abstract representation of antigen processing, it should then
be possible to produce dynamic models of the regulation of receptor-bearing agents,
based on, for example, optimal control theory. These would involve both continuous
and discrete dynamics (differential and difference equations respectively). By per-
forming analytical studies of the mathematical models, their asymptotic behaviour
can be determined. These dynamical systems will also be converted into numerical
simulations suitable for developing computational models, which will provide nu-
merical predictions that can be compared with the results of the development of the
algorithms.

5.1.2 Modelling of Network Topologies

It is possible to examine the way that the overall response is mediated by the net-
work of signals created by cytokines. A sensible approach would be to extract some
generic topological features by focusing on particular small subsets of the immune
network, chosen for the relevance to the desired engineering properties. In order to
do this one could look towards complex network theory, using as a starting point
the models of Barabasi, Watts & Strogatz, and extending this with ideas of Alon
on network motifs for biological systems [37]. Specific subsets of immunological
networks to be examined include: self regulation and switching between immune
cell responses such as T-helper cells e.g. Th1/Th2; innate modulation of adaptive
immune response via the complement system (which helps clear pathogens from an
organism); mutually inhibitory effects of cytokines such as IL4 and IFγ upon one
another.

Network models of specific subsystems such as these will be developed, and can
then be tested against experiments, leading to further refinement of these models.
Through the biological experiments it should be possible to verify features of the
local topology of subsystems within immune networks. It would be possible to in-
vestigate how the particular architecture of these networks affects the robustness of
their response, allowing the selection of suitable network motifs to be incorporated
into the development of the Immuno-engineering library.

11

Timmis, J. et al.

5.2 Immuno-engineering Library

Adopting a problem-oriented approach [34] it should be possible to determine the
immuno-requirements of the case studies helping to drive the research and deter-
mine the relevant Immuno-Ecology and Immuno-Informatics principles. From these
bio-specific principles, it will be possible to develop abstract descriptions in the
form of UML (statecharts, sequence diagrams) and develop design patterns [38]
that capture salient properties and encapsulate constraints. Their properties could
be analysed to ensure that they have not lost the desired immuno-properties during
abstraction. This should be iterated as appropriate, incorporating extra components
as discovered through the modelling work and the case studies. The output of this
task would comprise generative pattern languages of immuno-engineering analysis
and design: tools that aid a system designer in analysing a specific application, and
in applying immuno-engineering principles and concepts to its particular sensors,
tasks, and embodiment that respects the biological underpinnings.

The abstractions and pattern languages that have now been developed will
provide the foundation for building a software library for developing immuno-
engineered systems. This would result in an implementation library in the form of
architectures and algorithms that can be instantiated in the case studies. One of the
fundamental properties of the immune system is that it is a highly parallel system of
communicating agents. Therefore, consideration should be given to potential paral-
lel processing architectures, platforms and programming languages and determine
which will allow the immuno-engineering properties to be implemented effectively,
and what physical constraints they will impose. For example, technologies such as
VHDL, JSCP and occam-π allow for the development of truly parallel software
systems and allow for a natural mapping from the stochastic-π calculus.

5.3 Experimental Immunology

Central to the concept of immuno-engineering is the ability to employ immuno-
engineering principles in the context of actual experimental immunology. Immuno-
engineering principles and mathematical models developed through this process
should direct experimental work. Indeed, one of the major motivations for the use
of modelling in experimental work is to make use of the predictive nature of the
models and to tie them closely to experimental work: otherwise models are devel-
oped in a vacuum. We do not expect that work from experimental immunology will
feed directly into the development of algorithms, but rather assist in the validation
of immuno-engineering principles, which will then feedback into the development
of models which then influences the library development. We now discuss possible
avenues for experimental work in the context of immuno-engineering.

12

Immuno-engineering

5.3.1 Cytokine Interactions

As a starting point for part experimental work, we would propose the testing of cy-
tokine interaction models which can be done using in-vitro systems. In such experi-
ments, control of the T-helper subset balance by innate signals derived from allergen
can de demonstrated: proteolytically active allergen favoured the development of T-
cells producing of IL4 (T-helper 2, Th2), and reduced numbers of interferon gamma
producing T- cells (T-helper 1, Th1).

5.3.2 Regulatory Interactions

From insights gained from the modeling and immuno-engineering phases, these
models can be developed to study regulatory interactions between cytokine pro-
ducing subsets of cells. Multi-parameter flow cytometry and intracellular staining
can be used (which allows visualisation of actual immune cells in a test-tube) to
analyse cytokine profiles at the single cell level. Such techniques are able to analyse
6 colours of fluorescence simultaneously, allowing detailed characterisation of large
populations (at least 106 individual cells) of responding lymphocytes. This approach
has been used to model signalling molecule relationships [39]. The complexity of
cytokine mediated control mechanisms has recently been emphasised by the de-
scription of a new helper T-cell subset producing interleukin 17 (Th17), which may
have a critical role in immune mediated tissue damage and cancer [40]. Modelling
of these complex interactions may provide a basis for intervention in this important
group of diseases

5.4 Case Studies and a Comment on Applications of AIS

The case studies should be used to utilise and evaluate the architectures and algo-
rithms developed as part of the above process. In combination, such case studies
should display a range of immuno-informatics characteristics e.g. virtual, physical,
open, dynamic and a range of space and time scales. The diversity of these character-
istics should ensure that after case study development and feedback, the applicable
scope of the immuno-engineering library will be sufficiently broad to support a wide
range of applications.

Hart and Timmis [41] state that considering the application areas to date, AIS
have been reasonably successful but, as yet, do not offer sufficient advantage over
other paradigms available to the engineer. To address this and therefore tap the unex-
ploited potential of AIS, one of the suggestions they make is that life-long learning
is a key property of the immune system but true life-long learning, whereby a system
is required to improve its performance as a consequence of its lifetime’s experience,
has not been utilised in AIS. Hart and Timmis propose a list of features they believe

13

Timmis, J. et al.

AIS will be required to possess a combination of, if the field of AIS is to carve out
a computational niche. These future AIS features, quoted verbatim from [21], are:

1. They will exhibit homeostasis
2. They will benefit from interactions between innate and adaptive immune models
3. They will consist of multiple, interacting components
4. Components can be easily and naturally distributed
5. They will be required to perform life-long learning

As for the future roles of AIS, Garrett [17] states that the biggest difficulty facing
AIS is the lack of application areas to which it is clearly the most effective method.
It is suggested that hybrid AIS may help to provide more powerful methods to solve
certain problems. The current types of AIS used are also classified by Garrett into
those that detect antigens (negative selection and danger theory models), and those
that focus on destroying them (clonal selection and immune network models). It
is pointed out, however, by Garrett [17] that the immune system has more to offer
than this, with the mechanisms of the innate immune system and the view that the
immune system is a homeostatic control system, being highlighted as future areas
for AIS to exploit, and indeed this call seems to be taken up in a small part in recent
times [42, 43, 44]. Concurring with the above, Bersini [45] argues that the immune
system is much more than a simple classifier and performs much more than “pattern
matching” and urges people in AIS to think about applications that are far removed
from such applications which are the dominant force in AIS [23]. This challenges
the community to find that niche application that AIS alone can tackle. This may
come in the form of certain engineering type applications such as robotics and real-
time systems where the system is embodied in the world and needs to be able to
cope with extreme challenges that are constantly changing. Adopting an Immuno-
engineering approach should enable us to begin to tackle this challenges.

6 Conclusions

In this paper, we have presented a new way of thinking about the development of
immune-inspired systems and we have proposed the Immuno-engineering approach.
Currently, like many bio-inspired paradigms, Artificial Immune Systems (AIS) are
pale counterparts to their natural system. This is not to say that AIS should be like an
immune system or copy exactly what the immune systems does, this would lead to
not only complexity issues when instantiating such AIS, but also conceptual issues:
just because the immune system does something it does not mean that we should
do the same in an engineering context. Rather, we advocate the interdisciplinary in-
teraction to develop biologically grounded, theoretically understood and well tested
Immuno-engineering principles that can be deployed in a wide variety of application
domains. Should such an Immuno-engineering approach be developed, we believe
that AIS will then begin to not only capture the computationally interesting prop-

14

Immuno-engineering

erties of the immune system, but be able to make a significant contribution to the
immunology that serves as its inspiration.

Acknowledgements

The authors would like to thank Paul Andrews, Alex Freitas, Andy Greensted, Colin
Johnson, Nick Owens, Jamie Tycross and Joanne White for input into some of the
ideas behind Immuno-engineering. Jon Timmis would like to acknowledge the EP-
SRC grant EP/E005187/12 during which some ideas in the paper have been devel-
oped.

References

1. Timmis, J., Andrews, P.S., Owens, N., Clark, E.: An interdisciplinary perpective on artificial
immune systems. Evolutionary Intelligence 1(1) (2008) 5–26

2. Cohen, I.R.: Real and artificial immune systems: Computing the state of the body. Imm. Rev.
7 (July 2007) 569–574

3. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence
Approach. Springer (2002)

4. Forrest, S., Perelson, A., Allen, L., R.Cherukuri: Self-nonself discrimination in a computer.
In: IEEE Symposium on Research in Security and Privacy, Los Alamos, CA, IEEE Computer
Society Press (1994)

5. Ishida, Y.: Fully distributed diagnosis by pdp learning algorithm: Towards immune network
pdp model. In: Proc. of the Int. Joint Conf. on Neural Networks. (1990) 777–782

6. Bersini, H., Varela, F.J.: Hints for adaptive problem solving gleaned from immune networks.
In Schwefel, H., Manner, R., eds.: Proc. of the First Conference on Parallel Problem Solving
from Nature. Springer-Verlag, Berlin, Germany (1991)

7. Timmis, J., Bentley, P.J., eds.: Proceedings of the 1st International Conference on Artificial
Immune Systems (ICARIS 2002), University of Kent Printing Unit (2002)

8. Timmis, J., Bentley, P., Hart, E., eds.: Proceedings of the 2nd International Conference on
Artificial Immune Systems (ICARIS 2003), LNCS 2787, Springer (2003)

9. Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J., eds.: Proceedings of the 3rd International
Conference on Artificial Immune Systems (ICARIS 2004). LNCS 3239, Springer (2004)

10. Jacob, C., Pilat, M., Bentley, P., Timmis, J., eds.: Proc. of the 4th International Conference on
Artificial Immune Systems (ICARIS). Volume 3627 of Lecture Notes in Computer Science.,
Springer (2005)

11. Bersini, H., Carneiro, J., eds.: Proc. of 5th International Conference on Artificial Immune
Systems. Lecture Notes in Computer Science, Springer (2006)

12. de Castro, L.N., Von Zuben, F.J., Knidel, H., eds.: Proceedings of the 6th International Con-
ference on Artificial Immune Systems. Volume 4628 of Lecture Notes in Computer Science.
Springer (2007)

13. Dasgupta, D., ed.: Artificial Immune Systems and their Applications. Springer (1999)
14. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part I—basic theory and appli-

cations. Technical Report DCA-RT 01/99, School of Computing and Electrical Engineering,
State University of Campinas, Brazil (1999)

2 http://www.bioinspired.com/research/xArcH/index.shtml

15

Timmis, J. et al.

15. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part II—a survey of applica-
tions. Technical Report DCA-RT 02/00, School of Computing and Electrical Engineering,
State University of Campinas, Brazil (2000)

16. Ji, Z., Dasgupta, D.: Artificial immune system (AIS) research in the last five years. In:
Congress on Evolutionary Computation. Volume 1., Canberra, Australia, IEEE (December
8–12 2003) 123–130

17. Garrett, S.: How do we evaluate artificial immune systems? Evolutionary Computation 13(2)
(2005) 145–177

18. Timmis, J.: Artificial immune systems: Today and tomorow. Natural Computing 6(1) (Feb.
2007) 1–18

19. Timmis, J., Knight, T.: Artificial immune systems: Using the immune system as inspiration
for data mining. In: Data Mining: A Heuristic Approach. Idea Group (2001) 209–230

20. Kim, J., Bentley, P., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system
approaches to intrusion detection - a review. Natural Computing in print (2007)

21. Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Applied
Soft Computing 8(1) (2008) 191–201 In Press, Corrected Proof, Available online 12 February
2007.

22. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems.
Journal of Theoretical Computer Science In press(doi:10.1016/j.tcs.2008.02.011) (2008)

23. Forrest, S., Beauchemin, C.: Computer Immunology. Immunol. Rev. 216(1) (2007) 176–197
24. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection princi-

ple. IEEE Transactions on Evolutionary Computation 6(3) (2002) 239–251
25. Gonzalez, F.A., Dasgupta, D.: Anomaly detection using real-valued negative selection. Ge-

netic Programming and Evolvable Machines 4(4) (2003) 383–403
26. Neal, M.: Meta-stable memory in an artificial immune network. [8] 168–180
27. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-

inspired algorithm for anomaly detection. [10]
28. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger theory: The link between

AIS and IDS? [8] 147–155
29. Bentley, P.J., Greensmith, J., Ujjin, S.: Two ways to grow tissue for Artificial Immune Sys-

tems. [10] 139–152
30. Twycross, J., Aickelin, U.: Towards a conceptual framework for innate immunity. [10] 112–

125
31. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell

algorithm. [46] 404–417
32. Orosz, M.: An Introduction to Immuno-Ecology and Immuno-Informatics. In: Design Princi-

ples from the Immune System. Sante Fe (2001) 125–150
33. Stepney, S., Smith, R., Timmis, J., Tyrrell, A., Neal, M., Hone, A.: Conceptual frameworks

for artificial immune systems. Int. J. Unconventional Computing 1(3) (2006) 315–338
34. Freitas, A., Timmis, J.: Revisiting the foundations of artificial immune systems for data min-

ing. IEEE Trans. Evol. Comp. 11(4) (2007) 521–540
35. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press

(1999)
36. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochas-

tic pi-calculus. In: Proceedings of Computational Methods in Systems Biology (CMSB’07).
Volume 4695. (2007) 184–199

37. Alon, U.: Uri alon, network motifs: theory and experimental approaches. Nature Reviews
Genetics 8 (2007) 450–461

38. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley (1995)
39. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., Nolan, G.: Causal protein-signaling net-

works derived from multiparameter single-cell data. Science 308 (2005) 523–529
40. Steinman, L.: A brief history of t(h)17, the first major revision in the t(h)1/t(h)2 hypothesis of

t cell-mediated tissue damage. Nature Medicine (2007) 139–145
41. Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. [10]

483–497

16

Immuno-engineering

42. Owens, N., Timmis, J., Greensted, A., Tyrrell, A.: On immune inspired homeostasis for elec-
tronic systems. [12] 216–227

43. Davoudani, D., Hart, E., Paechter, B.: An immune-inspired approach to speckled computing.
[12] 288–299

44. Guzella, T., Mota-Santos, T., Caminhas, W.: Towards a novel immune inspired approach to
temporal anomaly detection. [12] 119–130

45. Bersini, H.: Immune system modeling: The OO way. [46] 150–163
46. Bersini, H., Carneiro, J., eds.: Proceedings of the 5th International Conference on Artificial

Immune Systems. Volume 4163 of LNCS. Springer (2006)

17

Heuristics for Uninformed Search Algorithms in

Prithviraj Dasgupta and Erik Antonson

Computer Science Department, University of Nebraska, Omaha, USA.
E-mail: pdasgupta@mail.unomaha.edu

distributed, unstructured, peer-to-peer file sharing network. Unstructured p2p
network protocols such as Gnutella use a flooding-based mechanism for resource
searching that generates considerable traffic in the network for each search query.
When the searching activity by users in a p2p network is high, the traffic generated
from the search requests could ensue congestion and result in increased search
latency and poor performance in the entire network. To address this problem, we
describe a resource search algorithm for p2p networks inspired by the stigmergetic
behavior of ants while searching for food. Ants are used to encapsulate a search
query initiated by a user in the p2p network. To search for the resource
corresponding to their search query among the nodes of the network, each ant
associates a certain amount of virtual pheromone with the nodes it visits. Later on,
ants searching for resources use the amount and type of pheromone associated by
previous ants with each node along their search path to direct the search query
towards nodes that have a higher probability of resulting in the success for the
search. We have tested our algorithm extensively within a simulated p2p network.
Our simulation results show that our ant-based heuristics perform better than a
completely uninformed or blind search that requires similar message overhead for
each search query. When compared to a flooding-based mechanism, although the
ant based search heuristic performs less efficiently under certain circumstances, it
is capable of reducing the message overhead per search query by an exponential
amount with respect to the flooding-based mechanism.

Keywords: Swarm intelligence, software agents, peer-to-peer networks, resource
searching.

Please use the following format when citing this chapter:

Dasgupta, P. and Antonson, E., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-
Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston: Springer), pp.
19–32.

Abstract We consider the problem of rapidly searching for resources or files in a

Self-Organizing Social Insect Models
Unstructured P2P Networks Inspired by

P. Dasgupta and E. Antonson

1. Introduction

Over the past few years, large scale distributed systems that can dynamically
change their configuration over time and exhibit complex interactions between the
system’s components have emerged as an attractive paradigm for building robust,
dynamic and adaptive systems. Such distributed systems have been used to design
systems in diverse areas including autonomous multi-robot systems for unmanned
search and rescue operations [1], peer-to-peer overlay networks for connecting
millions of users for rapid interactions [2], data mining for bioinformatics
applications [3], and pricing in online economies. Recently, several researchers
have developed self emergent techniques inspired from disciplines such as biology
to analyze the interactions between the components of such distributed systems
and develop simple rules that control and dynamically adapt the system’s behavior
[4, 5]. In this paper, we consider the problem of rapidly searching for resources to
reduce the latency facing users in a large scale, distributed, unstructured, peer-to-
peer (p2p) network. A p2p network is an overlay network of nodes that allows
users to share files and resources with one another. One of the major services
employed by users in a p2p network is to search for and possibly download
resources or files available with users on other nodes. With users and nodes in the
order of millions in commercial p2p networks, rapidly searching for resources is a
crucial problem that reduces the latency for all the users of the network as well as
diminishes the traffic and congestion in the network.

Currently, in unstructured p2p networks, an uninformed search algorithm is used
to locate resources being searched for by users across the different nodes of the
p2p network. However, uninformed search is inefficient because it generates
considerable traffic and congestion in the network through message flooding. In
this paper, we describe a heuristics-based algorithm for searching for resources in
an unstructured p2p network inspired by the stigmergetic behavior of social
insects such as ants. In our algorithm, ants use virtual pheromone to direct a search
query towards nodes that are likely to contain the resource being searched for in
the search query. Each ant is implemented as a message that encapsulates the
search query. An ant visits different nodes while searching for the resource
encapsulated within its search query and associates a certain amount of virtual
pheromone with the nodes visited by it. An ant searching for a resource later on
uses the cumulative amount of pheromone left behind on nodes by previous ants to
adapt its search behavior and direct its movement towards nodes that have a higher
probability of containing the resource it is searching for. We employ different
types of pheromone and different types of ants to improve the efficiency of the
p2p search mechanism. Our simulation results show that our ant-based heuristics
perform better than a completely uninformed or blind search that requires similar
message overhead as our ant based algorithm for each search query. When
compared to a flooding-based mechanism, the ant based heuristic evidently
performs less efficiently but is able to achieve an exponential reduction in
message overhead per search query as compared to the flooding mechanism.

20

Heuristics for Uninformed Search Algorithms in P2P Networks

2. P2P Resource Discovery Protocol

Figure 1 Messages exchanged in the p2p resource discovery protocol.

A p2p network consists of an interconnected collection of nodes. Nodes can join
and leave the network dynamically. Each node contains resources that can be
downloaded by other nodes in the network. Each node of a p2p network is usually
associated with a human user that creates the node. One of the immensely popular
applications of p2p networks, popularized by services such as Napster and Kazaa
[6, 7, 8, 9], has been to enable file-sharing between the users of the p2p network.
In a file sharing p2p network, the resources located on different nodes of the
network are media files containing audio, video, image and even textual data. The
major operation performed by a user in such a file sharing p2p network is to
search for and download files available on other nodes in the network. Each
node/user simultaneously allows other users/nodes to access the files present on
the node itself. The searching for files (resources) in a p2p network is realized
through the p2p resource discovery protocol shown in Figure 1. In the p2p
resource discovery protocol, a user at a node wishing to search for a resource
creates a search query containing certain unique keywords (e.g. filename or file
tags) related to the resource it wishes to search for. The search query is
encapsulated within a query message and provided with a search boundary that
corresponds to the maximum number of hops the query message should be
forwarded for, measured from its source. The query message is then forwarded to
different nodes in the network in a breadth-first manner originating from the node
that initiated the query. When a node in the p2p network receives the query
message, a local search is performed among the resources present on that node. If
the node contains a resource that returns a match with the keywords contained in
the query message, the node sends a queryHit message to the node that originated
the query, and does not forward the query message to other nodes. On the other
hand, if none of the resources on the node that receives the query message returns
a match for the keywords in the query message, the query message is forwarded to
all the neighbors of that node, provided the search boundary of the query message

21

P. Dasgupta and E. Antonson

 has not been reached. After a certain period of time since sending out the search
query, the user at the node originating the search query observes all the queryHit
messages it has received from other nodes in the p2p network and selects one or
more of these nodes to download the resource from.

A potential source of inefficiency in the p2p resource discovery protocol is the
enormous amount of messages generated in a p2p network for each search query.
For example, if the average degree of a node in a p2p network is denoted by ‘d’
and the search boundary of a query message is denoted by ‘b’, each query message
results in d b query messages in the p2p network, in the worst case. With several
million users simultaneously using a p2p network, the overall traffic generated
from query messages in a p2p network can be overwhelming. This adversely
affects the performance in the network by generating enormous amounts of
network traffic ensuing congestion. In this paper, we posit that the traffic from
query messages in a p2p network can be reduced if the breadth-first traversal used
by the query messages in the resource discovery protocol is replaced by a local
heuristics-based search that generates less than the exponential number of query
messages per search query. Clearly, if we reduce the number of messages
generated by a search query, the search query reaches fewer nodes and could
potentially result in lower success for the search. Therefore, the heuristics must be
carefully designed to compensate for the potential loss in reachability to nodes
with an intelligent node selection strategy that forwards to query message to a few
neighbor nodes that improve the probability of finding the resource on or along
them. To design such a heuristic, we have used the stigmergetic behavior of social
insects such as ants in locating objects of interest such as food.

2.1
Networks

Stigmergy is a process that enables insects to communicate information with each
other either directly (e.g., by physical contact) or indirectly (e.g., by depositing
chemical trails in the environment)[4]. The communication of information through
stigmergy results in a swarm-like collective, emergent behavior between the
insects to achieve complex tasks in a collaborative manner. For example, ants
searching for food initially explore the environment around their nest. Each ant
leaves behind a trail of a chemical substance called pheromone. Pheromone serves
as an attractor for ants searching for the food later on. Pheromone also evaporates
with time, to model the volatility in the environment and enable ants search for
different locations for food as well as to enable the gradual removal of trails after
the food at a location is exhausted. When an ant locates food at a particular
location, it returns back to the nest while depositing pheromone on the ground.
Consequently, the trail that leads from the nest to the food receives the maximum
amount of pheromone and ants get attracted towards it. These ants further
reinforce the pheromone trail between the nest and the food and enable ants to
reach the food from the nest thereafter by following the pheromone trail.

22

Ant- Algorithm Based Resource Discovery in P2P

Heuristics for Uninformed Search Algorithms in P2P Networks

To design the heuristics for the p2p resource discovery protocol based on the
stigmergetic behavior of ants, we have modeled the forwarding of a query
message as the movement of a virtual ant between the nodes visited by the query
message. The stigmergetic behavior of these virtual ants is realized through virtual
pheromone associated with the nodes that each ant visits. To record the
pheromone information at each node, we maintain a pheromone table within each
node. The pheromone table of a node contains the address or identifier of each
neighbor of that node and a real value corresponding to the amount of pheromone
associated with that neighbor node. Initially, the pheromone value of each
neighbor node is initialized to zero. As ants search for resources, they update the
values in the pheromone table of each node they visit while searching for
resources. When an ant reaches a node, it determines the neighbor node to visit
next based on the pheromone value inside the pheromone table of the node.

In a p2p network, nodes can leave and join the network in an ad-hoc manner.
Also, a user at a node can dynamically add and remove resources that are stored
within the node. This dynamic nature of a p2p network and the resources within its
nodes implies that the pheromone values within the pheromone tables of the
different nodes must be dynamically updated to enable ants visit newly joined
nodes to search for resources within them, as well as to remove outdated trails that
lead to removed resources or nodes that have already left the network.
Consequently, the ant algorithm needs to balance the exploitation of existing trails
to search for resources with exploration of nodes to discover newly added
resources. To achieve this balance between exploitation and exploration in our
algorithm, we have used two different types of pheromone in our model. The first
type of pheromone, called pheromone, is used to mark routes that have resulted in
successful searches and enables exploitation of existing trails. The second type of
pheromone, called anti-pheromone, is used to mark nodes that have resulted in an
unsuccessful search and enables exploration of new nodes or nodes that did not
have resources that were searched for in the past. Based on these two types of
pheromone, we have also designed two different types of forward-moving ants for
our algorithm, which exhibit different responses to the different types of
pheromone. The different ant types used in our algorithm are described below:

 Forward Foraging Ants. These ants deposit pheromone at nodes they
visit and also get attracted to higher amounts of pheromone and repelled
by higher amounts of anti-pheromone. From each node, a forward
foraging ant prefers to go to neighbor nodes that have higher amounts of
pheromone and lesser amounts of anti-pheromone.

 Forward Explorer Ants. These ants deposit anti-pheromone at nodes
they visit and also get attracted to higher amounts of anti-pheromone and
repelled by higher amounts of pheromone. From each node, a forward
explorer ant prefers to go to neighbor nodes that have higher amounts of
anti-pheromone and lower amounts of pheromone.

23

P. Dasgupta and E. Antonson

 Backward Ants Both types of forward ants become a backward ant
when either they discover the resource on a node, or, they reach the
search boundary without discovering the resource. Backward ants trace
the route taken by their corresponding forward ant in the reverse
direction. A backward ant deposits pheromone at each node it visits along
its route, if the resource that the corresponding forward ant was looking
for was found, and, deposits anti-pheromone at each node it visits along
its route, if the resource was not found.

A forward ant contains the search algorithm that is executed by the ant on arriving

search query encapsulated by the ant over the resources present on a node and
returns a success only if there is a match.

3. Model

Our model of the p2p network comprises a connected network of N nodes. Each
node contains certain resources inside a resource table and a resource can be
identified on a node with a unique identifier. Nodes join and leave the network at
random. Each node maintains a forwarding table containing the addresses of its
neighbor nodes determined using the p2p node discovery protocol. Each address
in the forwarding table is associated with a normalized weight that represents the
probability of ant to migrate to that node. The weight of a node in the forwarding
table gets updated when an ant selects it to move to it. Pheromone increases the
weight while anti-pheromone decreases it. The use of a single weight attribute to
reflect both types of pheromone keeps the ant algorithm simple and also reduces
the size of the forwarding table.

A user at a node initiates a search by providing a set of keywords corresponding to
the identifier of the resource(s) he or she wishes to locate. The node originating
the query creates a forward ant with an empty stack. At each node, the ant selects
a neighboring node to move to for the next hop, with a probability given by the
weight of the node in the forwarding table. Before migrating to the selected node,
the ant updates the weight of the node in the forwarding table according to the
ant's type as described below.

24

at a node. The search algorithm performs a linear search for the terms in the user’s

Heuristics for Uninformed Search Algorithms in P2P Networks

Symbol Parameter
an Number of nodes in the forwarding table of node n

w i,n
t Normalized weight associated with neighbor node i of node n at time t

n Amount of pheromone deposited on node n

0 Amount of pheromone deposited by an ant at the source node of the search

n Amount of anti-pheromone deposited on node n

0 Amount of anti-pheromone deposited by an ant at the node on which search
terminated

h s,n Number of hops made by an ant to reach from the node s on which it started
its journey to the current node node n

Forward Foraging Ant. A forward foraging ant starts from its origin with an
empty internal stack. The algorithm used by a forward foraging ant at a node n to
select a neighbor node i and update the weight associated with node i uses the
following parameters shown in Table 1. The update rules for the pheromone at

and,

The factor is determined experimentally and it controls the decrease in the
amount of pheromone deposited as the ant moves further away from its origin.
The second term on the r.h.s of Equation 1 ensures that the amount of pheromone
deposited on a node is proportional to its current weight. This prevents excessive
pheromone (or anti-pheromone) being deposited on a node whose weight is very
high (or low). Equation 2 ensures that the weights of nodes in the forwarding table
remain normalized after the weight of a node is updated by an ant. The ant pushes
the address of the current node into its internal stack before moving to the selected
node.

Forward Explorer Ant. A forward explorer ant works in a manner similar to a
forward foraging ant except the following:

 It uses the inverse probability (1- wi,n
t) to select a node i from the

forwarding table of its current node n. This ensures that the probability of

25

node n are the following:

(1)

(2)

Table 1 Parameters used for the ant-heuristics based p2p resource discovery alogrithm

P. Dasgupta and E. Antonson

selection of a node by an explorer ant is proportional to the amount of
anti-pheromone deposited on it.

 It updates the anti-pheromone at each visited node according to the
following equations:

where s is the origin node for the explorer ant.

Backward Ant. When the forward ant locates a resource or reaches its search
boundary without locating the resource, it becomes a backward ant. The backward
ant inherits the stack from its corresponding forward ant. If the resource was
located by the forward ant, the backward ant rewards each node along the reverse
route with pheromone using Equation 2. Otherwise, if the search boundary was
reached without locating the resource, the backward ant deposits anti-pheromone
on each node it visits using Equation 3 to indicate that the node did not lead to a
successful resource discovery. For the backward ant, the node s represents the
node on which the resource was found (in Equation 2) or the node on which the
search boundary was reached without locating the resource (in Equation 3).

4. Simulation Results

We have implemented a Java application to simulate a dynamic p2p network and
verify the performance of our ant-based p2p resource discovery algorithms. The
Java application implements each node in the p2p network as a thread that is
capable of communicating with each other threads (nodes) via message passing.
To simulate the dynamic joining and leaving of nodes in the p2p network, we have
used the ‘churn’ parameter that controls the rate at which nodes enter and leave
the p2p network. Also, to simulate the availability of resources across the nodes of
the p2p network, we have assumed that the probability of locating a resource at a
particular node by an ant searching for the resource is a function of the number of
resources available at that node. The number of resources available at a particular
node is determined using a zipf distribution [10]. The default values of the
different parameters used in our simulations are shown in Table 2. In the
simulation experiments, we vary different parameters of our ant-based algorithm
and in the p2p network and compare the effect of varying the parameters on the
success ratio for the search, and, compare the performance of the ant-based
algorithm with the two comparison strategies. For all our results, we have used the
ratio between the number of successful search queries and the total number of
search queries (called success ratio) as a measure of the performance of the search
algorithm. All results are averaged over 10 simulation runs.

26

(3)

Heuristics for Uninformed Search Algorithms in P2P Networks

We have compared the performance of our ant-based algorithm for resource
searching with two other search techniques. First, we have used a random or
uninformed search mechanism where, at every hop, a search query is forwarded to
one of the neighbors of the current node selected at random (denoted by legend R
in the graphs of the simulation results). Since a search query is forwarded to only
one node at every hop in this random mechanism and our ant-based mechanism,
both these mechanisms generates at most d messages for each search query, where
d is the search boundary for the search query. For our second comparison strategy,
we have used the breadth first search (BFS) strategy currently used for resource
searching in unstructured p2p network protocols such as Gnutella (denoted by
legend BFS in the graphs of the simulation results). The BFS strategy forwards the
search query to all neighbors of a node at every hop. Therefore, the message
overhead of the BFS strategy for a single search query is bd where b is the average
node degree in the p2p network and d is search boundary for the search query.

Table 2 P2P Network Parameters for the Simulations

Name Parameter Value

N Number of nodes in the p2p network {200, 500, 1000}

D Number of neighbors per node (average
node degree)

4

Churn Rate at which nodes join and leaving the
network

50

Resource availability (Probability of a
search ending successfully at a node)

0.02

numberOfAnts
Number of ants or search queries originated
by each node during the lifetime of the
simulation

numberOfFiles * / 4 = 25

B Search boundary for each ant 4

P Probability of foraging {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

Amount of anti-pheromone deposited on
the origin node/search boundary

0.6

Amount of pheromone deposited on the
origin node/resource node

0.6

f
Decrease in the amount of pheromone
deposited as the ant moves away from the
origin node

4.0

b
Decrease in the amount of pheromone
deposited as the ant moves away from the
search boundary/resource node

4.0

4.1.1. Varying the Weight of Pheromone

For our first simulation, we observe the effect of varying the amount of
pheromone deposited by forward foraging ants on the different nodes visited along

their search path () between 0.3 to 0.9. As shown in Figure 2(a), we observe that
varying the pheromone weight has a limited effect of about 0.2% in the success

27

P. Dasgupta and E. Antonson

 ratio of search queries. The largest amount of pheromone, = 0.9, is the most
effective overall and this can be attributed to the fact that larger amounts of
pheromone require a longer time to decay and are able to sustain successful trails
over a longer period of time , thereby causing subsequent ants to follow those
successful trails and locating the resources they are searching for. A similar result
was obtained on the success ratio by varying the amount of anti-pheromone
deposited by explorer ants on nodes along their search path.

 = {0.3, 0.6, 0.9}

0.077

0.078

0.079

0.08

0.081

0 0.2 0.4 0.6 0.8 1

Probability of Foraging

Su
cc

es
s

R
at

io

0.3
0.6
0.9

(a)

f = {0.0, 1.0, 4.0, 6.0, 7.0}

0.077

0.078

0.079

0.08

0.081

0 0.2 0.4 0.6 0.8 1
Probability of Foraging

S
uc

ce
ss

 R
at

io 0
1
4
6
7

(b)

Figure 2 (a) Success Ratios for Varying Pheromone Weights. (b) Success Ratios
for Varying Forward Ant Pheromone Decay Rates.

4.1.2. Varying the Spatial Decay of Pheromone

For our next set of simulations, we varied the decrease in the amount of
pheromone deposited by each forward ant as the ant moves away from the origin
node (f) between 0.0 and 7.0. As shown in Figure 2(b), we observe that varying
the forward ant pheromone decay rate has a limited effect of about 0.2% on the
success ratio of the search queries. The smallest pheromone decay rate, f = 0.0
(no decay), is the most effective overall. This behavior can be attributed to the fact
that larger values of pheromone decay rate result in pheromone trails decaying
rapidly at nodes further away from a successful node. Consequently, with a higher
pheromone decay rate ants are not able to locate successful nodes and direct their
search effectively when they are even a few hops away from a successful node. A
similar result was obtained for the anti-pheromone decay rate (b).

28

Heuristics for Uninformed Search Algorithms in P2P Networks

d = {2, 3}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Probability of Foraging

Su
cc

es
s

R
at

io

2
2R
2BFS
3
3R
3BFS

d = {4, 6}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Probability of Foraging

Su
cc

es
s

R
at

io

4
4R
4BFS
6
6R
6BFS

Figure 3 Success Ratios for Varying Neighbors with 200 nodes (left graph) and

4.1.3.

Varying the Number of Nodes and the Number of Neighbors

For the simulations in this group, we varied the number of neighbors per node (d)
between two or three (left graph) for a network with 200 nodes, and, between four
and six (right graph) for a p2p network with 1000 nodes. As shown in Figure 3,
we observe that d = 3 in a network of 200 nodes results in a higher success ratio
because the network is more connected. However, in a network of 1,000 nodes
changing the degree of each node from 4 to 6 has very limited effect on the
success ratio. The reason for this can be attributed to the fact that increasing the
node degree in the network beyond an average node degree of 4 does not
significantly affect the network diameter and consequently does not improve the
success ratio for the search. In fact, for our ant-based algorithm, increasing the
node degree beyond a certain value obfuscates efficient trails and reduce the
success ratio.

4.1.4. Varying the Resource Availability

For the next set of simulations, we vary the resource availability () on a node
between 0.005 and 0.1. However, all nodes in the network have the same resource
availability. As shown in Figure 4(a), we observe that varying the resource
availability has a significant effect of about 36% on the success ratio for the search
queries. The largest resource availability, = 0.1, is evidently most effective
because increasing the number of resources in the network reduces the search time
required to locate a resource. In the next set of simulations, we verify the effect of
heterogeneous values of the resource availability parameter. is set to different
values on different nodes of the network following the values of resource

29

1000 nodes (right graph).

availabilities in actual p2p networks reported in [10]. Here, varies between

P. Dasgupta and E. Antonson

 = {0.005, 0.02, 0.1}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Probability of Foraging

Su
cc

es
s

R
at

io

0.005
0.005R
0.005BFS
0.02
0.02R
0.02BFS
0.1
0.1R
0.1BFS

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Probability of Foraging

Su
cc

es
s

R
at

io

R
BFS

(b)

Figure 4 (a) Success Ratios for Varying Resource Availabilities (b) Success Ratios

0.0005 (on 30% of nodes), to 0.0055 (on 30% of nodes), to 0.055 (on 30% of
nodes), and 0.2525 (on 10% of nodes). As shown in Figure 4(b), we observe that
varying the probability of foraging for this p2p network configuration has a
significant effect of about 21% in the success ratio of the search queries. The ant-
based search behavior was more successful than the random search behavior for
probabilities of foraging of 60% and greater. This would suggest that p2p
networks having a high degree of heterogeneity will benefit the most from ant-
based heuristics for resource discovery within the network. Moreover, it should
be noted that a probability of foraging of 100% appears to be the most effective
for this type of network.

For the next set of simulations, the resource availability () on different nodes is
allowed to vary between 0.01 and 0.7. The p2p network for this simulation has
1,000 nodes with six neighbors per node. As shown in Figure 5, we observe that
varying the resource availabilities for these p2p network configurations has a
significant effect of about 93% in the success ratio for the search queries. The ant-
based search behavior is more successful than the random search behavior for all
the distributions. The ant-based search makes its greatest improvement (up to a
15% improvement over the random search) at aggregate resource availabilities of
4% and 12%. The breadth-first search was significantly more effective than the
ant-based search for the heterogeneous resource distributions having fewer
resources; but, as the aggregate resource availability for the network simulations
increases, the success ratios for the ant-based search approaches the success ratios
for the breadth-first search.

30

for Heterogeneous Resource Availability.

Heuristics for Uninformed Search Algorithms in P2P Networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Aggregate Resource Availability

Su
cc

es
s

R
at

io

Ant-Based
Random
BFS

5. Related Work

Resource discovery is implemented by flooding a resource query across nodes of
the network in most commercial p2p systems [7]. However, query flooding
produces considerable network traffic by blindly forwarding the query across the
network. Improvements to query flooding include p2p stacks [6, 11] that use

strategically place resources on nodes using a hash function to improve resource

algorithms, these techniques focus more on resource management and do not
incorporate the information obtained from previous resource queries to improve
future searches. Ant algorithms have already been applied to several applications
[3, 14] including dynamic programming, traveling salesman problem and routing
in telecommunication networks [5]. However, resource discovery in p2p networks
is different from each of these applications because the node on which the
resource will be discovered is not known a priori and the topology of the p2p
network can change dynamically as nodes join and leave. Extensions to ant
algorithms using anti-pheromone for the traveling salesman problem have been
studied in [15]. The Anthill framework[2] employs ant-based algorithms for load
balancing in a p2p network and ants backtrack along the path they traveled to
update routing tables at each node. In contrast our algorithm uses different types
of pheromone and ants with different behavior to make p2p resource discovery
more efficient.

31

Figure 5 Success Ratios for Various Heterogeneous Resource Availabilities.

super-peer nodes, and, dynamic hash table (DHT) based techniques that

availability and enable rapid lookup [12, 13]. In contrast to our ant-based

P. Dasgupta and E. Antonson

6. Conclusions and Future Work

In this paper, we have described an informed search algorithm using an ant-based
heuristic for p2p resource discovery. We are currently investigating extensions to
the algorithm described in this paper using multiple ants to enable parallel search
queries. We are also exploring techniques that enable ants to dynamically change
their type and the pheromone deposited by them based on the performance of their
search query. Finally, we plan to develop techniques that allow ants to exchange
trail information with each other to locate resources rapidly. We envisage that
biology inspired emergent algorithms provide a useful direction for further
exploring challenges and issues of p2p networks for future research.

References

1. H. Van Dyke Parunak, and S Brueckner : Swarming Coordination of Multiple UAVs for
Collaborative Sensing. In: Proc. 2nd AIAA ’Unmanned Unlimited’ Systems Conference,
San Diego, CA, (2003).

2. O. Babaoglu, H. Meling and A. Montresor: Anthill:A framework for the development of
agent-based peer-to-peer systems. In: Proc. 22nd International Conference on Distributed

3. Abraham, C. Grosan, V. Ramos (eds.): Swarm Intelligence in Data Mining,”Studies in
Computational Intelligence , vol. 34, Springer, (2006).

4. E. Bonabeau. , M. Dorigo, G. Theraulaz: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999.

5. G. Di Caro and M. Dorigo: AntNet: Distributed Stigmergetic Control for Communications
Networks. Journal of Artificial Intelligence Research, vol. 9, pp. 317-365, (1998).

6. Fast Track, URL http://www.fasttrack.com
7. Gnutella, URL http://www.gnutella.com
8. Kazaa, URL http://www.kazaa.com
9. Napster Inc., URL http://www.napster.com
10. S. Saroiu, P. Gummadi, S. Gribble: Measuring and analyzing the characteristics of Napster

and Gnutella hosts. Multimedia Systems, vol. 9 no.2, pp 170-184, (2003).
11. B. Yang and H. Garcia-Molina: Designing a super-peer network. Proc. 19th International

Conference on Data Engineering (ICDE), pp. 49-62, (2003).
12. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan: Chord: A peer-to-peer

lookup service for internet applications. In: Proc. ACM SIGCOMM Conference, pp. 149-
160, (2001).

13. J. Kubiatowicz, et al.: OceanStore: An Architecture for Global-Scale Persistent Storage. In:
Proc. ACM ASPLOS, pp. 190-201, (2000).

14. P. Dasgupta: Improving Peer-to-Peer Resource Discovery Using Mobile Agent Based
Referrals. In: Proc. 2nd Workshop on Agent Enabled P2P Computing, pp. 41-54, (2003).

15. J. Montgomery, and M. Randall: Anti-pheromone as a tool for better exploration of search
space. In: Lecture Notes in Computer Science, vol. 2463, Springer-Verlag, pp. 100-110,
(2002).

32

Computing Systems (ICDCS), pp. 15-22, (2002).

Congestion Control in Ant Like
Moving Agent Systems

Alexander Scheidler, Daniel Merkle, and Martin Middendorf

Abstract In this paper we study the problem of congestion in system where
agents move according to simple ant inspired movement rules. It is assumed
that the agents have to visit a service station to refill their energy storage.
After visiting the service station the ants can move randomly and fast. The
less energy an agent has the slower it becomes and the more it moves in di-
rection of the service station. Different methods for self-organized congestion
control are proposed in this paper where the behavior of the agents compared
to the original is not changed or is changed only slightly without the need to
use any global information and without using additional sensory information.
The proposed systems are investigated with

1 Introduction

The (movement) behavior of social insects is an inspiring source of ideas
for the design of methods for solving various problems in computer science
and related fields. Examples are the well-known Ant Colony Optimization
method as introduced in [1] (for an overview see [2]), algorithms for the
movement behavior of robots [3], ant inspired clustering methods (for an
overview see [4]), or the self-organized behavior of the compounds in Organic
Computing (OC) [5, 6] systems (for an overview see [7]). Emergent pattern

Alexander Scheidler and Martin Middendorf
Department of Computer Science
University of Leipzig, Postfach 100920, 04009 Leipzig, Germany
{scheidler,middendorf}@informatik.uni-leipzig.de

Daniel Merkle
Departement of Mathematics & Computer Science
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
merkle@imada.sdu.dk

Please use the following format when citing this chapter:
Scheidler, A., Merkle, D. and Middendorf, M., 2008, in IFIP International Federation for Information Processing, Volume 268;
Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 33–43.

Alexander Scheidler, Daniel Merkle, and Martin Middendorf

that might arise when groups of animals move have been deeply investigated
in biology (e.g., [8, 9, 10, 11]). In [12] the so called sorting behavior in the
brood chambers of the ant Leptothorax unifasciatus has been investigated.
In the brood chambers the youngest brood items (eggs and microlarvae) are
placed in the chambers center, larger larvae are arranged in concentric rings
around the center, and the largest and oldest brood (pupae and prepupae) is
placed in an intermediate area between the peripheral larvae and the larvae
of medium size. One explanation why this sorting occurred is that the brood
distribution pattern helps to organize the brood care in the nest. It has been
shown by simulation studies that a system with very simple behavioral rules
for the movement of agents can show an emergent sorting behavior. The
sorting behavior of ants has inspired the design of methods that are used by
robots to solve sorting problems [13].

In [14] movement models that are inspired by the ant Leptothorax uni-

fasciatus ants have been applied to OC systems with moving agents. In the
studied OC systems the agents have one (or several) service stations which
they have to visit from time to time (e.g., to recharge their batteries or to
drop items they have collected). It was shown that emergent patterns that oc-
cur within the distribution of the agents with respect to the different service
stations can occur even when only very slight behavioral differences between
the agents exist. It was also shown that a problem with the ant inspired move-
ment models is that unwanted congestion can emerge at the service stations
unless there is only a small number of agents in the system.

In this paper we propose and study some methods to reduce and control
the emergent congestion in ant like moving agent systems. The aim is to
develop methods where the behavior of the agents is not changed or is changed
only slightly without the need to use any global information and without
using additional sensory information. While reducing congestion (and thereby
increasing the performance of the system) it is important that the fairness of
the system is not reduced. Fairness is measured here as the variance of the
waiting times of the agents before they can visit the service station.

The paper is structured as follows. In the next Section 2 the agent model
and the movement behaviour are introduced. The methods for congestion
control are introduced in Section 3. The experiments are described in Section
4. Results are presented in Section 5. Conclusions are given in Section 6

2 Agent Model

Different models for the movement of ants within a nest have been introduced
in [12]. It was shown that small differences in the movement behavior of the
ants can lead to spatial sorting of the ants (i.e., on average over time ants with
different behaviour can be found in different areas of the nest). The degree
of the sorting depends on the particular movement model. In principle each

34

Congestion Control in Ant Like Moving Agent Systems

(a) (b)

Fig. 1 (a) Every agent is modeled as a disc; ρ - radius; O - centre of the body (x, y); α

- direction of movement; H - centre of the head; σ - sensing range. (b) Effect of different
values of the parameter µi on the turning behavior when unobstructed; Z is the service
point; (upper) for large µi there is only a slight difference between moving from or to the
service point; (bottom) for small µi the turning angle becomes significantly smaller the
smaller the angle between actual moving direction and the vector to the service point is

of the defined movement models consists of the following two actions for an
ant: “turning” the movement direction and “moving” straight forward.

In [14] some of the movement models of [12] have been changed slightly to
avoid an unnatural blocking effect that was observed and also to adapt the
models to fit the requirements of OC systems. It was shown that emergent
spatial sorting patterns for groups of randomly moving ant like agents can
depend on slight differences in the movement models. It was observed that
the movement of ants can depend on the CO2 gradient which typically points
to the center of a brood chamber ([15, 16]). It was argued in [14] that the
movement behaviour of agents in OC systems might similarly depend on their
movement direction with respect to the direction of a service station. But,
different from the natural systems in the OC system there might be several
service points that influence the movement of the agents. It was shown that
the relative size of the influence area of the service points can lead to an
interesting and strong emergent pattern within the spatial distribution of
agents with slightly different moving behavior.

The movement models of the agents that are used in this paper correspond
to the repulsive ant model from [14]. This model which is a mixture of the
centripedal ant model and the avoiding ant model from [12]. This mixed
movement model was introduced to overcome the problem that agents get
stuck near the focal point (see [14] for details). The behavioural differences
between the agents were modeled in the way that each agent i has a parameter
0 ≤ µi ≤ 1 that influences its moving behaviour. Fixed values µi = i/(n + 1)
for agent i ∈ 1, . . . , n were used for the experiments in [12] and [14]. In this
paper we investigate a movement model where the parameter µi can vary over
time for every agent. The movement behaviour is described in the following.

35

Alexander Scheidler, Daniel Merkle, and Martin Middendorf

Shape of the Agents. Similar as in [12] the shape of an agent is modeled
as a disc with radius ρ. The centre of the disc (xi, yi) represents the position
of agent i. Each agent has an actual direction of movement αi, which is
measured as the angle relative to the lower border of the simulation area.
The point at position (xi + ρ cos αi, yi + ρ sin αi) models the centre of the
agents head. From the centre of the head every agent can sense obstacles
within a range of distance σ, called sensing range (see Figure 1). Agent i
collides with agent j if agent j is within the sensing range of agent i, i.e.,
when the distance between the centre of the head of agent i and the centre
of the body of agent j is smaller than σ + ρ. Similarly, an agent collides with
the nest wall when the euclidian distance between the centre of its head and
the wall is less than the sensing distance.

Movement when unobstructed. If there is no obstacle (wall or other
agent) within its sensing range an agent will move and turn at each time
step. The agent moves distance νi in direction αi, i.e., xi ← xi +νi cos αi and
yi ← yi + νi sin αi. The different values νi represent different velocities of the
agents. The parameter value νi dependents on the internal parameter µi of
the agents as follows: νi = (1 − µi)νs + µiνf where parameters νs and νf ,
0 < νs < νf < 1 denote the slowest and the fastest velocity. Within the same
time step the agent also makes a turn by changing its movement direction
by αi = αi + θi, where θi depends on the internal parameter µi of the agent
and φi is the angle between the actual moving direction αi and the vector
towards the service point. For the calculation the clinotaxis model from [17]
is used: θi ← pu(1 − µi)χ + pbµiτ · (1 − cos(φi))/2 where χ = 15◦, τ = 30◦.
The values of pu and pb are randomly chosen from {−1, 1} and determine
the direction of turning. The turning behavior depends on φi and the larger
this angle is the stronger the agent will turn. Agents with larger value µi will
be less affected by their φi as agent with small µi (see Fig. 1 b). Therefore,
for agents with small value µi the attraction to the service point is stronger
than for agents with large value µi.

Movement when obstructed. If the wall or another agent is within the
sensing range of an agent, the agent will not move, but only make a turn. It
avoids the obstacle explicitly by turning into one direction until it can move
again. To define the turning direction assume that agent i collides with agent
j. The sign of the scalar product between the vector that is perpendicular
to the vector of the moving direction of agent i and the vector from the
centre of agent i to the centre of agent j determines the direction of turning:
θi ← sign((− sin αi, cos αi) · (xj − xi, yj − yi))U(0, Θi). A collision with the
nest wall is handled analogously.

In our model we use the parameter µi to model the state of an agent.
The higher the value of µi is the faster can the agent move. Therefore, if an
agent has visited the service area the value of µi is increased. The motivation
behind this is that in applications the agents might get new power at the
service station or has been unloaded at the service station. During movement

36

Congestion Control in Ant Like Moving Agent Systems

of an agent its value µi decreases. The motivation is that in applications the
agent might use power or pick up items.

3 Congestion Control

To resolve possible congestion of the agents at the service point we introduce
three different congestion control methods. The goal of these methods is to
resolve the congestion either by leaving the behaviour of the agents unchanged
or by changing the behaviour of the agents only slightly but without need for
introducing any new type of sensory information or global knowledge. The
first two control methods CP and CW do not change the agent behaviour
and the third method CD changes only the sensing range of the agents.

The idea of control method CP is to introduce two parallel walls next to
the service station that form a pipe. The idea of this method is that agents
that have visited the service station and have a hight value µi might be able
to move away from the service station through the pipe whereas only few
of the agents that have a small value µi might use the pipe to move to the
service station. An example of a pipe can be seen in the left of Figure 3.

Control method CW is to introduce two additional walls on two sides of
the service station. Each wall has an small opening in the middle that is next
to the service station. The idea of this method is that slow agents with small
value of µi might be forced to wait behind a wall and therefore do not block
the service station. Hence, the agents that have visited the service station
can move away from it. An example for this control method CW can be seen
in the middle of Figure 3.

The third control method CD is to change the behavior of the agents
slightly. Here the sensing range σi of agent i depends on the internal param-
eter µi. The sensing range is calculated as follows: σi = 2ρ−1.4µiρ. The idea
behind this method is that agents with a small value of µi that move to the
service station have a larger sensing range and therefore leave some space
between them when they come next to the service station. This space can be
used by the agents that have visited the service station and therefore have a
large value µi can to move away from the service station.

4 Experiments

The simulation area is a quadratic field with side length 1. At the start of
a simulation run the positions of the agents are distributed randomly with
uniform distribution over this area. Also the values of the internal parameters
µi are chosen randomly with uniform distribution between 0 and 1. In the
centre of the field there is a circular service area with radius 0.04. The centre

37

Alexander Scheidler, Daniel Merkle, and Martin Middendorf

of this area is the service point. If an agents position (i.e., the centre of its
body) is within the service area its internal parameter µi is set to 1. If agent
i moves (e.g. the agent is unobstructed) the value of µi is decreased by a
fixed value 0.001 until µi = 0. Observe that the smaller the value of µi is
the slower moves the agent and also the higher is the attraction force to the
service point.

For the experiments the body of an agent has radius ρ = 0.01, the radius of
the head is σ = 0.006. Parameters νs and νf that denote the slowest and the
fastest velocity are set νs = 0.0006 and νf = 0.006. Per time step parameter
µi of agent i reduced by 0.001. Different numbers of agents have been used
and for each number of agents and each congestion control method each run
was repeated 20 times over 10000 time steps each.

5 Results

Figure 2 shows the distribution of the agents after 2000 time steps for different
number of agents. It can be seen that a system with 90 agents works without
strong congestion at the service station. It can also be seen that agents with
small value µi (bright color) tend to be close to the service station. Agents
with large value µi are nearly randomly distributed over the whole field. This
is different for a system with 150 agents. Here most nearly all agents can be
found close to the service station. The agents with large value µi can be found
or very near to the service station. They cannot move away because the way
is blocked by the agents with small value µi that try to move into the service
area. As shown later, for this system the agents cannot do much useful work
(if that means that the agents should ideally move over the whole field).
Altogether, the observed congestion is an unwanted effect of the system that
depends on colony size.

Figure 3 shows the distribution of the agents for a system with 150 agents
after 2000 time steps using one of the congestion methods CP and method
CW. It can be seen that there is much less congestion by slow agents with
small value µi within the pipe for method CP than outside of the pipe next
to the service area. It can also be seen that the agents with high value µi can
move through the pipe.

For method CW it can be seen that the congestion around the service area
is much less compared to the system without congestion control. Agents with
high value µi can be found in different parts of the filed and not only next
to the service area (as it was the case when no congestion control is used.

For method CD the distribution of the 150 agents after 2000 time steps is
show in Figure 4. The figure shows that at least some agents with high value
µi that have visited the service station can move away from it because the
agents with small value µi leave some space between each other.

38

Congestion Control in Ant Like Moving Agent Systems

Fig. 2 Distribution of the agents for different number of agents after 2000 time steps;
(left) 90 agents; (right) 150 agents; the smaller the value µi of an agent the brighter is its
color; the service area is the white circle in the middle

Fig. 3 Distribution of agents for a system with 150 agents after 2000 time steps using
congestion method CP (left), method CW (right)

To compare the performances of the control methods with system that
uses no control method the following measure for the performance of the
system is used. If an agent reaches the service area its value µi is increased
by adding the value 1−µi so that µi = 1 holds afterwards. Summing up over
all values 1−µi for all i and every time when the value µi is increased can be
seen as measure for the performance the system. This value is called the total
energy consumption of the system and is denoted PT when measured over
the first T time steps. Since agents that move use energy whereas agents that
can not move do not use energy the total energy consumption is a measure
how freely the agents can move on average.

Figure 5 shows the total energy consumption PT for a system without
congestion control and systems with congestion control. It can be seen that
for a small number of agents when no congestion occurs the system without
congestion control has the highest performance. This is no surprise because
the congestion control methods slightly hinder the agents to move freely
within the field when there is no congestion. But when the number of agents

39

Alexander Scheidler, Daniel Merkle, and Martin Middendorf

Fig. 4 Distribution of agents for a system with 150 agents after 2000 time steps using a
congestion method CD

becomes larger than 100 the performance of the system without congestion
control decreases very fast. For more than 130 agents this system has the
worst performance. For a medium number of agents the system with method
CW is the best. But for a large number of agents this method is not much
better than a system without congestion control. For a larger number of
agents (more than 210) the system with method CD is clearly the best.
Method CP is better than the system without congestion control for more
than 135 agents but it is worse than the other two methods. One reason might
be that it is not so easy for the agents that have visited the service station
to move away from it through the pipe because they move randomly in the
considered model (and do not actively move away from the service station).

Besides the reduction of congestion, fairness for service is another impor-
tant measure for the collective behavior of agents. In the considered system,
e.g., the waiting times for service have to be similar. We measured the fairness
of the system in two different ways. Firstly, at the end of a given time interval
of length T for every agent the total amount of values that have been added
to µi for all its visits of the service station is measured. Then the relative
standard deviation (RSD) of these values for all agents has been taken as
a measure for the fairness of the system (the lower the variance means the
more fair the system is).

The behavior of the systems with respect to this fairness measure is shown
in the left part of Figure 6. It can be seen that the system without congestion
control is most fair for a small number of agents (less than 110 agents). For
a larger number of agents the system with the CD method is the best.

The second measure of fairness is defined as follows. Let τ(T) be the mean
waiting time of the agents where the waiting time of an agent is defined as
the length of the time interval from the time when its internal parameter (µi)
becomes zero until the time when it reached the service area (measured over
a simulation run over T time steps). Let σ(T) be the standard deviation of
these waiting times. A dimensionless measure for the fairness is then defined

40

Congestion Control in Ant Like Moving Agent Systems

10 30 50 70 90 115 140 165 190 215 240 265 290

0.
01

0.
03

0.
05

0.
01

0.
03

0.
05

0.
01

0.
03

0.
05

0.
01

0.
03

0.
05

no control
CP

CW

CD

Fig. 5 Total energy consumption PT for different number of agents measured over 10000
time steps for a system without congestion control and systems with the different congestion
control methods

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

#agents

R
S

D

no control
CP

CW

CD

0 50 100 150 200 250 300

0.
6

0.
8

1.
0

1.
2

1.
4

#agents

s*

no control
CP

CW

CD

Fig. 6 Fairness for different number of agents measured over 10000 time steps for a system
without congestion control and systems with the different congestion control methods; first
fairness measure RSD (left), second fairness measure σ∗ (right)

similarly as in [?] by σ∗(T) = σ(T)/τ(T). Note, that for this measure only
the waiting times of the agents that reached the service point are considered.
Hence, a congested system may still be fair, if there is only a small subset of
agents that are served and these agents have similar waiting times.

41

Alexander Scheidler, Daniel Merkle, and Martin Middendorf

The behavior of the systems with respect to the second fairness measure
is shown in the right part of Figure 6. It can be seen that the system the
CD method is most fair (independently of the number of agents). For small
number of agents (less than 110) the system without congestion control is
the second most fair system. For larger number of agents the system with
method CP is the second best.

6 Conclusions

In this paper we have studied the problem of congestion control agent sys-
tems with ant inspired movement rules. In the studied systems the agents
have to visit a service station to refill their energy storage. Three methods
for self-organized congestion control have been proposed. It was shown exper-
imentally that the proposed methods can significantly reduce the congestion
and are also fair for systems with a larger number of agents. Differences
between the behavior of the systems have been discussed.

Acknowledgment

This work was supported by the German Research Foundation (DFG)
through the project Organisation and Control of Self-Organising Systems
in Technical Compounds within SPP 1183.

References

1. M. Dorigo, V. Maniezzo, A. Colorni: Positive feedback as a search strategy. Tech Rep.,
91-016, Dip Elettronica, Politecnico di Milano, Italy, 1991.

2. M. Dorigo, T. Stützle: Ant Colony Optimization. MIT Press, 2004.
3. J.-L. Deneubourg, S. Goss, N. Franks, A.B. Sendova-Franks, C. Detrain, L. Chretien:

The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proc. of

the 1st Int. Conf on Simulation of Adaptive Behavior, 356–363, 1991.
4. J. Handl, B. Meyer: Ant-based and swarm-based clustering. 1(2), 95-113, 2007
5. H. Schmeck: Organic Computing – A New Vision for Distributed Embedded Systems.

Proc. of the Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2005), 201-203, 2005.

6. T. Schöler, C. Müller-Schloer: An Observer/Controller Architecture for Adaptive Re-
configurable Stacks. Proceedings ARCS 05, Springer, LNCS 3432, 139-153, 2006.

7. D. Merkle, M. Middendorf, A. Scheidler: Organic Computing and Swarm Intelligence
In C. Blum, M. Merkle (Eds.), Swarm Intelligence, Springer, 2008.

8. J.L. Deneubourg, A. Lioni, C. Detrain: Dynamics of Aggregation and Emergence of
Cooperation. Biol. Bull., 202:262267, 2002.

42

Congestion Control in Ant Like Moving Agent Systems

9. S. Depickère, D. Fresneau, J.-L. Deneubourg. A basis for spatial and social patterns
in ant species: dynamics and mechanisms of aggregation. Journal of Insect Behavior,
17(1): 81-97, 2004.

10. R.V. Sole, E. Bonabeau, J. Delgado, P. Fernandez, J. Marin: Pattern formation and
optimization in army ant raids. Artificial Life, 6(3):219-226, 2000.

11. G. Theraulaz, E. Bonabeau, S.C. Nicolis, R.V. Sole, V. Fourcassie, S. Blanco, R.
Fournier, J.L. Joly, P. Fernandez, A. Grimal, P. Dalle, J.L. Deneubourg: Spatial pat-
terns in ant colonies. Proc. Natl. Acad. Sci., 99(15):9645-9649, 2002.

12. A.B. Sendova-Franks and J.V. Lent. Random walk models of worker sorting in ant
colonies. Journal of Theoretical Biology, 217:255-274,2002.

13. C. Melhuish, A. B. Sendova-Franks, S. Scholes, I. Horsfield, F. Welsby: Ant-inspired
sorting by robots: the importance of initial clustering. J R Soc Interface. 3(7), 235–242,
2006.

14. A. Scheidler, D. Merkle, M. Middendorf: Emergent Sorting Patterns and Individual
Differences of Randomly Moving Ant Like Agents. Proc. 7th German Workshop on
Artificial Life (GWAL-7), IOS Press, 11 pp., 2006.

15. M.D. Cox, G.B. Blanchard: Gaseous templates in ant nests. Journal of Theoretic
Biology, 204:223-238, 2000.

16. G. Nicolas and D. Sillans: Immediate and latent effects of carbon dioxide on insects.
Annual Review of Entomology, 34:97–116, 1989.

17. D. Grünbaum, Schooling as a strategy for taxis in a noisy environment. Evolutionary
Ecology, 12: 503-522, 1998.

43

Resource-Aware Clustering of Wireless Sensor
Networks Based on Division of Labor in Social
Insects

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

Abstract In this work concepts of division of labor in social insects and emergent
self-organization are used to design a very efficient heuristic for clustering wireless
sensor networks. Differently from previous approaches, we aim at creating clus-
ters with a minimum amount of resources and good intra-cluster connectivity. Our
heuristic has two steps. First, we elect the most suitable clusterheads that have the
extra responsibility of leading and representing the cluster. Afterwards, the heuris-
tic selects the respective members of the clusters. These processes are guided by a
response function that determines the suitability of each node to a given task (role).
For example, nodes with good connectivity and high energy level are good can-
didates for being clusterheads. In addition to the division of labor, we are using
a positive/negative feedback mechanism to control the stimulus for attracting new
members. Until having enough resources, the positive feedback acts in order to re-
cruit new members. After gathering enough resources, the negative feedback starts
to play a major role. Simulations showed that for 80% of cases the proposed heuris-
tic could find results which are below 2.3 times the theoretical optimal solution,
define as the sum of the intracommunication cost of the clusters.

1 Introduction

Wireless sensor networks (WSN) are constantly gaining popularity and attracting
more research over the years. One of the reasons is a myriad of novel applications
that can be implemented with them. The applications range from human-embedded

Tales Heimfarth
Federal University of Rio Grande do Sul, Brazil, e-mail: theimfarth@inf.ufrgs.br

Dalimir Orfanus
University of Paderborn, Germany, e-mail: orfanus@uni-paderborn.de

Flávio Rech Wagner
Federal University of Rio Grande do Sul, Brazil, e-mail: flavio@inf.ufrgs.br

Please use the following format when citing this chapter:

Heimfarth, T., Orfanus, D. and Wagner, F.R., 2008, in IFIP International Federation for Information Processing, Volume 268;
Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 45–58.

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

sensing and ocean data monitoring to collaborative space exploration. Nevertheless,
because of current hardware limitations of wireless nodes, e.g. commercial off-the-
shelf sensor nodes, approaches for the management of WSN have to be designed to
work using only a low amount of resources and low communication overhead.

In general, two heuristic design approaches for management of sensor networks
at different levels (e.g. topology control, network layer, application) are prevalently
used. The first method has in all nodes the knowledge of the (entire) network and let
they manage themselves. This circumvents the need for a more advanced organiza-
tion. Nevertheless, this generates overhead in terms of communication and memory
at each node. Each node must, for example, maintain routes to the other nodes in
the network. In large networks, the number of messages needed to maintain routing
tables may cause congestion in the network and depletes the energy of the nodes.
Ultimately, the need of individual self-management will generate a huge exchange
of messages and overhead.

The second method identifies a subset of nodes within the network and vest them
with the extra responsibility of being a leader (clusterhead) of certain nodes in their
proximity. The clusterheads are normally responsible for managing communications
between nodes in their own neighborhood as well as routing information to other
clusterheads in other neighborhoods [1]. This creates a hierarchy in the network.
Clustering in large-scale networks was proposed as a means of achieving scalability
through a hierarchical approach [11]. Some examples of clustering benefits can be
found at the medium access layer, where clustering helps to increase system capacity
due to the promotion of the spatial reuse of the wireless channel, and at the network
layer, where it helps to reduce the size of routing tables. Sensor networks and, more
generally, wireless ad hoc networks largely benefit from clustering.

In this paper, we present a new heuristic that organizes a WSN into clusters.
Differently from previous approaches, our proposal addresses the problem of parti-
tioning the nodes of the network in multi-hop groups with a guaranteed minimum
amount of resources q (or budget) in each one of them. This kind of clustering is
useful in various scenarios. In our case, the clustering heuristic is used in the devel-
opment of an efficient service distribution in our Operating System (OS).

In our OS for sensor networks, the application and OS services are distributed
among different nodes and services are called remotely by the applications. Sharing
the services in the network reduces the amount of resources required in each single
node. An instance of the OS with all required services should be placed inside each
cluster. This means that each cluster must have a minimum amount of resources.

An additional difference from our clustering heuristic to the existing ones is that
we are trying to minimize the total communication cost inside the clusters. This
communication cost is measured by means of a link metric that assigns a weight to
each link, thus modeling the quality of the link. Moreover, the heuristic is in several
aspects inspired by the behavior of various biological systems.

Our heuristic is very complex and was designed for a dynamically changing
topology. In this paper we focus on the part of heuristic that deals with static topolo-
gies.

46

2 Related Work

In this section, a literature overview of clustering algorithms developed for sensor
and ad hoc networks is presented. Some approaches were originally proposed for ad
hoc networks but are also used in WSN (a subclass of ad hoc networks).

The idea of clustering is to decompose the nodes of a graph in subsets in a way
that the union of the subsets contains all nodes of the graph. For each subset (or
cluster), some conditions should hold.

Given a graph G = (V,E) representing a communication network, where vertexes
are the nodes and edges the communication links, the clustering process constructs
subsets of nodes Vi, i = 1, ..,n where ∪i=1,..,nVi =V , such that each subset Vi induces
a connected sub-graph of G. These vertex subsets are clusters. Ideally, the size of the
clusters falls in a desired range. Moreover, for several approaches, a special vertex
in each cluster is elected to represent the cluster and is called clusterhead [5].

There are several design factors concerning heuristics for cluster construction
in ad hoc networks. A very important one is the maximal diameter of a cluster:
when constructed as a maximum independent set (or minimum dominating set),
clusters have the maximum diameter of 3. Nevertheless, we are interested in multi-
hop clusters with higher diameter. Different objectives may be pursued in multi-hop
clustering.

In [1], the issue of constructing the d-hop dominating set in an ad hoc network is
addressed. Because of the NP-completeness of the problem for unit disk graphs, a
heuristic called max-min d-cluster formation is presented. It can find good solutions
with relative low communication (O(d)) and generalizes the dominating set prob-
lem. Nevertheless, differently from our approach, the link quality is not considered
when selecting cluster members. Moreover, the size of the cluster is uncontrolled.
Dense network areas result in larger clusters than sparse ones.

In [10], an algorithm for bounded size clustering based on an expanding ring
search is presented. The algorithm relies on a sequence of rounds. In each round,
new members are recruited for the cluster in the n-hop neighborhood. n is incre-
mented in each round until the bound (number of nodes) of the cluster is reached.
If more nodes than necessary are in the cluster, the clusterhead simply discards the
excess. We compare our heuristic with a modified version of the expanding ring that
guarantees clusters with a given amount of resources.

Two algorithms improving the expanding ring approach are presented in [7, 8].
They are called Rapid and Persistent clustering. As in the expanding ring, a maxi-
mum determined size (i.e. number of member nodes) for the cluster is desired. The
algorithms are more efficient than the expanding ring. The cluster sizes produced
should be as close as possible to the specified bound (which we will call here B) in
order to limit the total number of clusters. Nevertheless, the bound should not be
exceeded.

The Rapid heuristic uses less messages than the Persistent one. Nevertheless, it
has a poor worst-case analytical performance. The Persistent heuristic persistently
tries to produce a cluster of the specified bound if possible. The proposed algorithms
do not violate the cluster size bound at any time. However, this bound is just given

47Resource-Aware Clustering of Wireless Sensor Networks

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

in number of nodes and there is no way to differentiate nodes. In our approach,
a weight is associated to each node (representing the amount of resources of the
node), and the bound is related with this weight. Moreover, the clusters in the Rapid
and Persistent heuristics are always smaller than or equal to the given bound. In our
approach, all clusters have at least a specified amount of resources (as can be seen
in the next section).

In the Rapid and the Persistent algorithms, the clusterheads are elected in a com-
pletely random fashion, which leads to the selection of nodes that are not very suit-
able for the role. In our solutions we use the opposite approach: strongly connected
nodes plenty of energy have a higher probability to be selected as clusterheads. An-
other difference is related to the links: the Rapid and the Persistent heuristics do not
attempt to rank the member candidates (concerning, for example, the links) in order
to select the best connected nodes to form the cluster.

A clustering algorithm where a lower and a upper bound are used to control the
size of the clusters is presented in [2]. The algorithm is based on the idea of finding a
rooted spanning tree of the graph (using Breadth-First-Search) and to form clusters
from the subtrees that match the clustering constraints. The upper and lower bound
approach tries to keep the amount of nodes in the clusters inside a specified interval.
But differently from our approach, overlaps are allowed. Moreover, the link quality
is also not relevant to the heuristic.

Another very important difference between all existing approaches and the one
presented in this work is the fact that we try to minimize the communication over-
head among all nodes inside a cluster. For that, as it will be presented in the next
section, we use the smallest distance between each pair of nodes inside the clusters
for the objective function. This distance is calculated by means of our combined
link metric.

3 Problem Definition

In this section, a formal definition of our exact clustering problem is described.
We call our problem minimum intracommunication-cost clustering.
The ad hoc network is modeled as an undirected graph G = (V,E), where V is

the set of wireless nodes and an edge {u,v} ∈ E if and only if a communication
link is established between node u ∈ V and v ∈ V . The two nodes in this case are
neighbors. Each node v ∈V has a unique identifier (IDv).

For each link, a weighing function assigns a positive weight. w : E → R
+. This

weight measures the quality (or goodness) of a wireless link. We define for each
edge that is not in the graph ({u,v} /∈V), that w(u,v) = ¥.

The quality of the link is calculated combining the following parameters: trans-
mission success rate, received signal strength, and history of the link. The statistic-
based observation of transmission success is a good indication of the future success
rate. Nevertheless, it reacts slowly to changes, and at beginning there is no data to
calculate its value. The received signal strength indication makes possibly quick in-
dications, but it is not very precise. Therefore, the combined metric uses these two

48

parameters. Moreover, in order to prioritize stable links, the history is also used. We
use normalized link metrics, where 0 means a very good link and 1 a very poor one.
We call the link metric virtual distance.

For each node, an additional weighing function r is responsible for characterizing
the amount of resources available in the node. r : E →R

+. This models the resource
capacity of the node.

The clustering process partitions the nodes into clusters, each one with a cluster-
head and possibly some ordinary nodes. As presented in the related work section,
there are several different types of clustering strategies pursuing different objectives.

In our problem, the objective is to get multihop clusters with enough resources for
the OS and application processing. Moreover, the minimization of the intra-cluster
communication cost is also desired.

This optimization problem is modeled as follows:

Input: A graph with weighted nodes and links (G,w,r) and a resource requirement
q∈R

+, where the sum of all node weights in each cluster must be higher or equal
to q.

Constraints: For every input instance (G,w,r,q), M (G,w,r,q) = {C1,C2, ..,Ck|Ck

is the kth cluster configuration}, where the following properties hold
Ck =

{
ck1,ck2, ..,ck(nk)

}
is the kth possible cluster configuration of the graph,

where k = {1,2, ..,n} (n is the number of possible configurations, nk is the num-
ber of clusters in the kth configuration, nk = |Ck |)

cki =
{

v1
ki,v

2
ki, ..,v

|cki|
ki

}
∈ Pot(V) is the ith cluster of the kth configuration, where

v j
ki is the jth element of the cluster cki

For each configuration Ck, k = 1,2, ..,n, the following properties must hold:

1.
⋃

i=1,2,..,nk cki = V (cluster definition constraint)
2.

⋂
i=1,2,..,nk cki = /0 (no overlapping constraint)

3. Let P(u,v) =
{

p(u,v)
1 , p(u,v)

2 , .., p(u,v)
m

}
be the set of all possible paths between

nodes u and v. p(u,v)
h ∈ Pot(E) is the hth possible path where:

p(u,v)
h =

{
{u,xh

1},{xh
1,x

h
2}, ..,{xh

g−1,x
h
g},{xh

g,v}
}

, xh
f ∈V , f = 1,2, ..,g, g ∈ IN

For each {u,v} ∈ E ∧ u,v ∈ cki, i = 1,2, ...,nk, ∃p(u,v)
h ∈ P(u,v)|xh

f ∈ cki for
f = 1,2, ..,g. (Connectivity constraint)

4. å|cki|
j=1 r(v j

ki
) ≥ q, for each i = 1,2, ...,nk (minimum amount of resources per

cluster)

Costs: For every cluster configuration Ck = {ck1,ck2, ..,ck(nk)} ∈ M (G,w,r,q),
the cost is given by:

cost(Ck,(G,w,r,q)) =
nk

å
i=1

å
u,v∈cki

1
2
·Dcki(u,v) ·

(
a · r(u)+(1−a)

)
(1)

Where D(u,v) is the virtual distance between u,v ∈ V . Dcki(u,v) is the virtual
distance between u,v using just edges that are inside the cluster cki. Note that

49Resource-Aware Clustering of Wireless Sensor Networks

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

∀v,u∈ cki,Dcki(u,v) = D(u,v) iff the cluster cki is a convex cluster, i.e., the global
shortest path between any two nodes in the clustering must use only links inside
the cluster. a ∈ [0,1] controls how much the amount of resources influences the
distance metric. For a = 0, just the distances between cluster members enter into
the metric; a = 1 means that nodes with n times more resources have an n times
stronger influence.
Now, we define how the virtual distance is calculated. Firstly, we introduce the

cost of a path as PCost(p(u,v)
h) = w(u,xh

1) +åg−1
f =1 w(xh

f ,x
h
f +1) + w(xh

g,v). The
virtual distance between u and v is the cost of the shortest path, gived by:

D(u,v) = PCost(p(u,v)
h) = minb

(
PCost(p(u,v)

b)
)

, for b = 1,2, ..,m.

The virtual distance using only nodes inside the cluster is defined by:

Dcki(u,v) = PCost(p(u,v)
h), where p(u,v)

h ∈ P(u,v)|xh
f ∈ cki and PCost(p(u,v)

h) =

minb

(
PCost(p(u,v)

b)
)

, for b = 1,2, ..,m

Goal: Minimum, i.e. mink{cost(Ck,(G,w,r)) , for k = 1,2, ..,n}

The minimum intracommunication-cost clustering is an NP-complete problem.
The proof can be performed by means of reducing the partition problem to our
clustering problem (partition problem ≤p minimum intracommunication-cost clus-
tering). The complete proof can be seen in [6].

4 The Emergent Clustering Heuristic

Our heuristic cluster construction process consists of two subparts: (1) The clus-
terhead election, responsible for selecting a subset of nodes and vesting them with
the extra responsibility of leading and representing the cluster; (2) The member-
ship selection, responsible for selecting the members of a cluster. Both subparts use
behaviors and principles observed in the nature.

Clusterhead election (Section 4.2) is inspired by division of labor and task allo-
cation in swarms of social insects, described in detail by Bonabeau et al. [3]. The
possible tasks (or roles) that a node can assume are:

Clusterhead (CH): The clusterhead nodes are the representatives of the clusters.
The identification of the cluster is given by the clusterhead. Moreover, special
tasks are assigned to the clusterhead. Once the clusterhead is not present in a
cluster anymore, the cluster ends its existence.

Member (Me): The members of the cluster are the nodes that have decided which
cluster they belong to.

Ordinary Node (Not member, Nm): Nodes that neither decide to enter a cluster
nor become clusterhead.

In the case of membership selection (Section 4.3), we are combining division of
labor with the concept of emergence of self-organization. Self-organizing systems

50

acquire structure by themselves and are normally composed by a large number of
locally interacting components. [4] presents two basic modes of interaction among
the components: positive and negative feedback. Our emergent clustering heuris-
tic is specifically inspired on the behavior of the male bluegill sunfish (Lepomis
macrochirus), which uses for nesting these two modes of interaction.

Positive feedback can be simplified as the behavioral rule “I nest where others
nest”. The nesting pattern appears in a large lake with an initial homogeneous struc-
ture due to the amplification of fluctuations: if the density of bluegills is sufficient,
through a random process, several nesting sites will be occasionally close enough
to provide a sufficient attraction that stimulates even more bluegills to nest nearby.
This random pattern of nest sites now becomes unstable and a cluster of nest sites
will grow. A process like this, with positive feedback, is also called an autocatalytic
process.

The negative feedback is responsible for controlling and shaping the system
in a particular pattern. Without it, a potential destructive explosion may be easily
reached. The feedback can be rephrased as “I nest where others nest, unless the area
is overcrowded”. Physical constraints like depletion of the building blocks can be
also included in the negative feedback.

As the result of the interplay of these modes of interaction, a nice-shaped cluster
of nests emerges at the bottom of a lake. This happens without any central control
or blueprint, exactly like in our heuristic.

4.1 Overview of the Approach

The first task of the heuristic is to elect the clusterheads of the network using the
response function Tqchv

:

qch v
returns the prob-

ability of a nonmember v to become a clusterhead. The function is responsible for
modeling the emergence of clusterheads in areas of the WSN where no clustering
is already taking place.

A clusterhead is now a unitary cluster with some resource (Ri = r(v), v is the
clusterhead of cluster i). When a clusterhead is elected in some part of the network,
as a consequence of missing resources it starts to “attract” new members with help
of the response function Tqrecrv,i

:

qrecrv,i
)

models the recruiting of new cluster members through a positive feedback pro-
cess. It provides the probability that node v will enter into the cluster ID = i.

The idea is that a cluster incrementally grows until it achieves at least the re-
quirement q of resources. The intensity of the attraction force (and consequently
the stimulus to enter into the cluster) is regulated by the amount of resources al-
ready in the cluster. A growing cluster exercises an attraction force to the nodes

51Resource-Aware Clustering of Wireless Sensor Networks

Nonmember → Member of x: The response function (recruitment function, T

Nonmember → Clusterhead: The response threshold function T

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

that are in the vicinity. This attraction force is expressed by a higher stimulus s in
the Tqrecrv,i

response function (positive feedback). Then, when a cluster attracts nodes
that bring enough resources, the attraction force becomes much smaller (negative
feedback).

4.2 Clusterhead Election

As we mentioned before, the clusterhead has an extra responsibility of represent-
ing the cluster and leading the selection of members. Nodes have different pre-
dispositions to be a clusterhead, i.e. they have distinct connectivity and distinct
amounts of energy. It is obvious that the clusterhead should have good connectivity
to other nodes and enough energy to cover the extra activity due to the leadership
(build-up and maintenance of a cluster). The opposite is also true: nodes with poor
connectivity and an almost depleted source of energy are not good candidates. This
concept is derived from the division of labor of social insects. Instead of having
just a certain number of fixed morphology agents (like the majors and minors in the
Pheidole genus), we have here the complete spectrum of nodes: from nodes very ca-
pable of assuming the clusterhead role to nodes not suitable at all for this task. We
model the probability of node v to become a clusterhead with the response function

TqCHv
(sCHv) =

sbCHv

sbCHv
+qbCHv

.

The fitness of the node to the role of clusterhead is modeled in the response func-
tion with the threshold (qCH). A small threshold means that the node is very suitable
to be a clusterhead. Parameter sCH models the stimulus to become a clusterhead. For
a given threshold, a high stimulus increases the probability of the node to become a
clusterhead.

The definition of threshold is in Equation 2.

qCHv = k1

(
åu∈NgbNm(v) w(u,v)

|NgbNm(v)|

)
+ k2(1−Ev)+ k3

(
1−min

(
1,

|NgbNm(v)|
Max_Neighb

))
(2)

Where NgbNm(v) is the set of all neighbor nodes which are in nonmember state,
w(u,v) measures the quality of the link between two nodes, and Ev describes the
energy level of the node.

As we said before, factors that influence the threshold are good connectivity (the
first and the third term) and amount of energy (the second term). Each factor has a
different importance for the overall threshold, which is captured with weights (k1,
k2, k3). Weights range from 0.0 to 1.0, and the sum of them is 1.0.

The stimulus function is given by sCHv = k1
telapsed
trequired

+k2

(
1− |NgbMe(v)|+|NgbCH(v)|

|Ngb(v)|

)
.

Where telapsed is the elapsed time since the clustering heuristic has started and
trequired is the maximum running time of the algorithm. Ngb(v) is the set of all neigh-

52

bors of the node v, NgbMe(v) is the set of nodes in member state and is subset of
Ngb(v), the same for NgbCH(v).

As we can see, there are two factors that stimulates a node to become a cluster-
head: (1) nodes that for a long time did not belong to any cluster (first term); and (2)
nodes without clusters in the vicinity (second term).

Based on the response function presented, each node periodically tests whether
it should become a clusterhead. Initially, all nodes are nonmembers. With time,
clusterheads will emerge and attract other nodes to be a member of their clusters.

If a clusterhead, after a certain number of attempts, could not keep the require-
ment q of resources per cluster, then the (incomplete) cluster will cease its existence
and the current members will be free to join other existing clusters.

4.3 Member Selection

Once clusterheads emerge, they start to send messages to attract new members. Each
nonmember that receives this message will evaluate its probability of assuming the
task of member of the cluster using the response function: Tqrecrv,i

=
srecrv,i

srecrv,i+qrecrv,i
.

Where the threshold and the stimulus have the following meaning:

Threshold qrecrv,i : measures how connected the node v is to the cluster i. A small
value means high suitability to be a member.

Stimulus srecrv,i : represents the volition of a cluster to attract new members. Here
the positive and negative feedback act.

The threshold function for node v is defined by:

qrecrv,i = k1 ·D
v
i +k2 · min

{
D(v,Clusterheadi)

Max_dist
,1

}
+k3 ·min

{
Cnv

i

Max_connect
,1

}
+k4 ·

r(v)
q

(3)

Where Dv
i i

is the distance to the clusterhead. Cnb
i = åe∈{Ngb(b)∩ci}(1−w(b,e)) measures the

connectivity to the neighbors that are already in the cluster using the link metric w.
The first factor that influences the threshold (first term) reduces the distance

among members of the cluster. The factor that influences the shape of the cluster
is captured in the second term. Advantage is given to flat configurations (small clus-
ter diameter).

The selection of nodes that are well connected to members of the cluster increases
the probability of reducing the cluster cost. This idea is reflected in the third term.

The fourth term covers the idea that nodes with higher resource availability will
potentially reduce the cost of the cluster because they reduce the necessity of taking
additional nodes.

The stimulus of a node to belong to the cluster i is given by srecrv,i = k ·
(p(Ri) ·g(Ri)).

53

is the distance to the nearest member of the cluster i and D(v,Clusterhead)

Resource-Aware Clustering of Wireless Sensor Networks

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

If two clusters are trying at the same time to attract the node, this equation is used
with the higher stimulus. The stimulus is the combination of positive and negative
feedbacks.
Aggregation Through Positive Feedback

Positive feedback is used to control the stimulus of neighboring nodes to enter a
determined cluster. It is performed by considering the attraction force (or stimulus in
the response function) to be proportional to the amount of resources Ri of the cluster
i plus some bias, i.e., p(Ri) = k1 + k2 ·Ri. This equation denotes the relationship
between the amount of resources and the “force” (that is reflected in the stimulus)
to attract new nodes to the cluster.
Creating Structure Through Negative Feedback

The negative feedback is responsible for “controlling” the explosive nature of
the positive feedback and to shape the emergent structures in the self-organizing

process. In our case, we use Equation g(Ri) = 1−
(

Ri
k1·q

)b
as negative feedback.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ttr

ac
tio

n
Fo

rc
e

Resources of a cluster (×q)

Combined

Fig. 1 Resulting attraction force after combination of the positive and the negative feedback

It is important to remark that the negative feedback in our case controls how
much the positive feedback takes effect, i.e., the result stimulus is given by the
multiplication of the feedbacks, a fact that is shown in Figure 1.

4.4 Cluster Construction Process

In this section we will present the steps performed by the heuristic to build the
clusters based on the concepts presented in the previous sections.

At the beginning, there is no cluster in the network. Every node tests periodi-
cally whether it should become clusterhead (using the response function Tqchv

). An
information flow based on beacons is used to provide the nodes with the necessary
knowledge for the response function.

When the node v decides to become clusterhead, a new cluster (we call it cluster i,
i = clusterID) comes into existence. Initially, this cluster has the resource Ri = r(v).

Now, it starts to broadcast to the neighborhood periodically its current resource
state (Ri). The message is called clusteringForward. The basic function of the clus-
teringForward message is to inform all members of the cluster and nearby neigh-

54

bors the actual amount of resources of the cluster. This is used by the nodes to cal-
culate the current attraction force of the cluster. The clusteringForward message
is forwarded by the members of the cluster until arriving at nodes outside the clus-
ter. During this phase, a spanning tree having the clusterhead as root is generated.
Nodes outside the cluster that receive a clusteringForward message will generate
the clusteringBackward message that travels back to the clusterhead, gathering in-
formation about nodes with intention to enter or leave the cluster. Each node that is
not a leaf of the spanning tree waits until receiving the clusteringBackward mes-
sage from its children before sending a fused clusteringBackward message to its
own parent.

We will call this process of sending the clusteringForward message and gath-
ering information through the clusteringBackward message a cluster construction
round.

As already said, the cluster construction round is started by the clusteringFor-
ward message issued by the clusterhead. When receiving this message, a node u
stores it temporarily in order to select the message with the smallest link metric to
the clusterhead. This is used to build a good spanning tree with the clusterhead as
root.

The way of responding to the incoming message varies depending on the current
status of the node u:
Node u is not a member of cluster i: The first action of the node is to determine

whether it should enter the cluster i. This is done using the response function
Tqrecrv,i

(recruitment function) to evaluate whether the node u wishes to enter the
cluster (recruitment function). This response function uses the connectivity to
the cluster as threshold (good connected nodes have less threshold to enter the
cluster), and the stimulus is given by the combination of the positive/negative
feedback presented in Section 4.3. If the test of the recruitment function returns
positive, the clusteringBackward message will carry the membership intention
of the node u. The next clusteringForward message will confirm (or not, if the
cluster is overcrowded) the acceptance of the node u in the cluster.

Node u is a member of cluster i: The node will test whether it should leave the
cluster using the response function Tqleavev

. If the test returns negative, the node
just retransmits (forwards) the message clusteringForward in order to continue
the construction of the spanning tree. If the node is willing to leave the clus-
ter (because its connection is getting loose), it also forwards the clusteringFor-
ward message, but indicating this intention of leaving the cluster. This will force
previous children to select another parent because this node is going to be dis-
connected from the cluster. If they could not find another parent, they must also
disconnect themselves from the cluster.

The clusteringBackward message is used to inform the clusterhead about nodes
with intention to enter the cluster and nodes willing to leave. Moreover, the id of
all members of the cluster is collected in this message. Therefore, the clusterhead
can re-check the complete membership of the cluster to see if some node has for
example disappeared due to failure or a drastic topology change.

55Resource-Aware Clustering of Wireless Sensor Networks

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

When the clusterhead receives the clusteringBackward message from all its
direct children, it can decide which nodes that are willing to enter the cluster will be
accepted. This decision is based on their thresholds to enter the cluster: nodes with
less threshold have higher priority.

It is important to state here that after the cluster is complete, the clusterhead
ceases to start new rounds. When some member of the cluster detects a large topol-
ogy change, the clusterhead is informed and a new round is started to re-check the
complete cluster (reactive response to topology changes).

An example of the cluster construction round is shown in Figure 2.

Fig. 2 Example of cluster construction round. (a) Clusterhead starts the round sending the message
clusteringBackward with the current amount of resources of the cluster. (b) When arriving at
nodes outside the cluster, they decide whether they are willing to join the cluster. This information

The first purpose of the positive/negative feedback is to reduce the amount of in-
formation aggregated in the clusteringBackward message. Nodes badly connected
to the cluster will decide not to enter the cluster, thus reducing the amount of infor-
mation that the clusteringBackward message must carry.

The second purpose of the positive/negative feedback mechanism is to control
the competition among neighboring clusters and belongs to the dynamic part of our
heuristic (which is not the main focus of this paper). The feedback curves are de-
signed in such a way that an already formed cluster may just loose some members
till the q limit is achieved, because, when this limit is achieved, the desire to attract
new members is at maximum. In the same way, if there are two clusters under con-
struction, this method avoids that one cluster steals members from the other one,
reaching the state where no cluster has fulfilled its requirement on resources.

5 Results

We implemented our emergent clustering heuristic using an event-based wireless ad
hoc simulator called ShoX [9]. Some parts of the heuristic were also implemented

56

is sent back using the clusterBackward message

in the specification and modeling language AsmL. As input, we generated 35

were generated by random selection of the node positions.
We used the received signal strength (RSSI) for the free space model with

isotropic point sources as link metric. We decided to test our heuristic for dense
networks, therefore the radio range was 70m, covering the complete field.

In this paper, we evaluate our heuristic for static networks and for networks of
homogeneous devices (i.e., each node has a unit of resource). We run our algorithm,
let it converge to a stable configuration, and compare the heuristic result with the
optimal one and also with an existing heuristic called expanding ring [10]. In order
to calculate the optimal result, we model our minimum intracommunication-cost
clustering as an integer linear programming model and, for each simulated instance,
we find the optimal solution for that configuration with the lp_solve program.

Figure 3 shows results of performed experiments. In average, the cost of our
heuristic was 1.98 times higher than the optimal solution and the expanding ring
was about 4.29 times higher. To run the simulation of the complete network, it took
10 seconds while the optimal solution needed more than 10 hours in Intel Core Duo
2.7 GHz computers.

Fig. 3 Normalized results of performed experi-
ments

Fig. 4 Cumulative distribution of normalized
simulation results

In Figure 4, the cumulative distribution of the normalized results can be seen. It is
possible to notice that for more than 80% of all simulations, the emergent clustering
heuristic could find results that were below 2.3 times the optimal one. In the case of
the expanding ring, results were below 5.2 times the optimal one.

6 Conclusion

In this paper, we introduce a useful clustering problem and develop an efficient
heuristic inspired by biological systems to solve it. The heuristic has two parts: the
clusterhead election, which is responsible for selecting a subset of nodes and vest-
ing them with extra responsibility of representation of the cluster, and membership
selection, which is responsible for selecting members in order to fulfill the resource
requirements of each cluster.

57Resource-Aware Clustering of Wireless Sensor Networks

instances of the problem with 16 nodes in a field of 50m by 50m. These instances

Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

The selection of the task for a node is based on its suitability for that task. In the
same way that ants with different morphology have tendency to perform different
tasks, different nodes have different probabilities of assuming the clusterhead or
cluster member roles. This concept is combined with a positive/negative feedback
stimulus, which is responsible to shape the size and form of the cluster.

The results of the simulations show that the heuristic performs well, with cost in
average just 1.98 times the optimal one. This was achieved in a distributed manner
and using only locally available information to make decisions. This makes this
heuristic suitable for ad hoc networks with resource-constrained devices or sensor
networks.

The results obtained here re-enforces our confidence that methods found in nature
can be successfully transferred to computer systems.

In the future, we plan to simulate the heuristic in networks with moderate topol-
ogy changes, evaluating our approach with dynamic scenarios.

References

1. Max-min d-cluster formation in
wireless ad hoc networks. In INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, volume 1, pages 32–
41vol.1, 26-30 March 2000.

2. S. Bannerjee and S. Khuller. A clustering scheme for hierarchical control in wireless networks.
In Proceedings of the IEEE INFOCOM, Anchorage, AK, April 2001.

3. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Santa Fe Institute Studies in the Sciences of
Complexity, New York, NY, 1999.

4. Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy Theraulaz, and
Eric Bonabeau. Self-Organization in Biological Systems. University Presses of CA, 2003.

5. Y. Chen, A. Liestman, and J. Liu. Clustering algorithms for ad hoc wireless networks. In Ad
Hoc and Sensor Networks, 2004.

6. Tales Heimfarth. Biologically Inspired Methods for Organizing Distributed Services on Sensor
Networks. PhD thesis, University of Paderborn, 2008.

7. R. Krishnan and D. Starobinski. Message-efficient self-organization of wireless sensor
networks. In Proceedings of IEEE Wireless Communications and Networking Conference
(WCNC), New Orleans, USA, March 2003.

8. Rajesh Krishnan and David Starobinski. Efficient clustering algorithms for self-organizing
wireless sensor networks. In Ad Hoc Networks, volume 4, pages 36–59, January 2006.

9. Johannes Lessmann, Tales Heimfarth, and Peter Janacik. Shox: An easy to use simulation
platform for wireless networks. In Proceedings of The 10th International Conference on
Computer Modelling and Simulation, Cambridge, England, April 2008.

10. C. V. Ramamoorthy, A. Bhide, and J. Srivastava. Reliable clustering techniques for large,
mobile packet radio networks. In Proceedings of the 6th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 87), San Francisco, USA, April 1987.

11. Ivan Stojmenovic, editor. Handbook of Sensor Networks. John Wiley and Sons Inc, 2005.

58

A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh.

Self-stabilizing Automata∗

Torben Weis and Arno Wacker

Abstract Biological systems are known to be probabilistically self-stabilizing, i.e.
with a high probability they can reach a stable state from any initial state. This
property is very important to computer-based systems, too. However, building self-
stabilizing systems is still very difficult. Proving that any given implementation is
in fact self-stabilizing is even harder. Nature has a big advantage: Any living being
must eventually die and limited energy limits the harm that an error can have on
the system. This greatly simplifies the realization of self-stabilization. To transfer
this concept to computer-based systems, we propose to modify the computational
model on which software is currently being built. We introduce energy-awareness
in Turing Machines (TMs). This will guarantee that any TM program that is correct
in the absence of errors is at the same time self-stabilizing in the presence of errors.

1 Introduction

Today’s software often assumes that errors do not occur. Better software designers
define at least an error model. For example, they assume network errors but no
memory errors. If errors occur which do not fit in the error model, the error is neither
detected nor corrected. If the error fits in the error model, it can be detected and
by default the application is stopped. In the best case, the error is detected and
corrected.

Biological systems are different. They do not feature any error detection and
they don’t throw exceptions. In the physical world all possible states are allowed

Torben Weis
University of Duisburg-Essen, Duisburg, Germany e-mail: torben.weis@uni-duisburg-essen.de

Arno Wacker
University of Duisburg-Essen, Duisburg, Germany e-mail: arno.wacker@uni-duisburg-essen.de

∗ This work has been supported by the DFG SPP Organic Computing

Please use the following format when citing this chapter:

Weis, T. and Wacker, A., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-Inspired
Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston: Springer), pp. 59–69.

T. Weis and A. Wacker

and biological systems have the tendency of developing from most initial states to
a set of preferred states. In these preferred states, living beings exist and reproduce
themselves.

In computer science we divide all possible states in valid and invalid states. Fur-
thermore, computer programs assume a precisely defined initial state. Any state that
can be reached without errors from this initial state is then called a valid state. A
system is called self-stabilizing if it transits from any invalid state to a valid state in
a constant amount of time.

In the related work section we discuss algorithms which are known to be self-
stabilizing. However, the development of such algorithms and the proof of their
self-stabilization property require much time and expertise. In most commercial
applications this is simply too expensive. Furthermore, real-life systems are very
complex which renders theoretical proofs next to impossible.

Obviously, there seems to be a major difference between software development
and biological evolution. In biology, evolution is constantly changing the genes and
up to now every known genetic program either terminated (i.e. the species died) or
it could reach a stable state where it continuously reproduces itself. Furthermore,
no species has been accidentally created that happened to eat up the universe or
bring it to a halt. Unfortunately, this is what we have to expect if we apply arbitrary
mutations on software programs. We will most likely end up with a program that
neither terminates nor reaches a valid state. Even worse, it will consume all CPU
time, disable all interrupts and lock the computer.

We claim that the problem is the automaton which executes the programs. Bio-
logical systems are being executed on a physics engine which follows a set of funda-
mental laws. Computer systems are being executed on machines which are a Turing
Machine or some equivalent. If we want to develop computer software inspired by
biology, we must first fix the computational model, i.e. the machine on which the
software is executed. In this paper we present a modified Turing Machine which
takes fundamental laws of physics into consideration. The result is that applications
running on this machine are automatically self-stabilizing.

2 Application Scenario

Biologically inspired software is not necessarily the best approach for all application
scenarios. In some application domains errors are not part of the normal operation.
Hence, if an error is detected, the system is stopped and the administrator must fix
it. For example, office and enterprise applications belong to this category.

Applications dealing with sensors and actuators are different. Temporary sensing
errors or temporarily broken actuators belong to the normal mode of operation and
there is no system administrator available for fixing every possible problem. Thus,
self-stabilizing systems are preferable, because they can autonomously recover from
a wide range of errors without any intervention by a system administrator.

60

Automata

Figure 1 Control Loop

The application scenario for our research consists of a wide range of control ap-
plications. The structure of control applications is shown in Figure 1. The controlled
system consists of actuators and sensors and interacts with the physical world. The
controller is implemented in software and communicates with the controlled sys-
tem by exchanging messages. Based on the sensor input and its internal state the
controller sends commands to the actuators. The behaviour of the actuators in turn
influences the sensors. Thus, the system is a software controlled feedback loop. Er-
rors or disturbances can be introduced on the controlled system. If the controller is
self-stabilizing, it can recover from any temporary sensing error and from any tem-
porarily broken actuator in constant time. Thus, for every system exists a constant
time t such that the entire system reaches a consistent state in no more than t seconds
after all temporary errors are gone.

The aim of our research is to create a software development process and tools for
building self-stabilizing controller software. In addition, we believe that the results
of our work can be applied to other application scenarios, for example in the area of
pervasive and ubiquitous computing.

3 Physics versus Turing Machines

The Turing-Church-Thesis claims that every effectively computable function can
be regarded as computable under the definition of the Turing Machine. It does by
no way claim the converse. Not every function that can be computed by a Turing
Machine can be computed by a physical machine. The typical argument is that a
TM has an infinite tape whereas all physical machines are limited. However, the
difference between physics and Turing Machines is not only a matter of tape length.

Our argumentation is that Turing Machines do not obey the second law of ther-
modynamics, which states that ”the total entropy of any isolated thermodynamic
system tends to increase over time, approaching a maximum value.” In contrast, a
Turing Machine can work until eternity on a program that continuously increases
the entropy of the tape. Even if we could build a physical computer with infinite
amount of memory, it would still not be Turing equivalent because it must obey the
second law of thermodynamics.

Self-stabilizing 61

T. Weis and A. Wacker

As a consequence of this observation, we modified the Turing Machine. The
first law of thermodynamics states that ”in a closed system energy can neither be
created nor can it disappear. It can only be transformed in other kinds of energy”
(e.g. thermal energy or work force). Thus, we had to introduce a concept that is
comparable to thermal energy and work force and a transformation between both of
them. The second law of thermodynamics limits the transformation between thermal
energy and work. It implies that it is impossible to construct a process that translates
thermal energy lossless to work force. This is often expressed as: ”Perpetuum Mobili
cannot exist”. Thus, our machine must have a way of transforming thermal energy
to work force in a non-lossless way only.

We do not want to overstress the parallels to physics. However, the laws of ther-
modynamics have been the starting point of our approach and inspired our machine.
Furthermore, these laws describe very well that there are some major differences
between the computational model used by biology (the laws of physics) and the
computation model of computer systems (Turing Machines).

4 Energy-aware Turing Machines

In our approach we assume that the read/write head of the TM has a certain thermal
energy. The tape has the thermal energy 0 and no symbols exist on the tape initially,
i.e. the head is hot and the tape is cold. The thermal energy of the read/write head can
be transformed into work force and it can be transferred to the tape and its symbols.
A read/write head can perform three kinds of work. It can move, read, or write.
Performing any of these actions affects the thermal energies. We assume that the
tape is huge, i.e. we can transfer much thermal energy to the tape without changing
its temperature significantly. The symbols are in contrast tiny. Little energy transfer
is required to heat them up. The head is supposed to be much larger than the symbols
but small compared to the tape. Size matters because it determines how much energy
is required to change the temperature of an entity.

In our machine the head is moving upwards and downwards. Moving the head
upwards transforms thermal energy of the head into potential energy. Moving the
head downwards transforms potential energy back into thermal energy. Because of
the second law of thermodynamics this transformation process must not be lossless.
Therefore, during each movement the read/write head heats up the tape, i.e. transfers
the thermal energy ∆E > 0 from the head to the tape (see Figure 2). As a result no
energy is ever lost or created and a perpetuum mobile (i.e. a head that is moving
forever) is impossible because more and more energy is transferred to the tape.

Over time the symbols exchange thermal energy with the tape. Thus, the symbols
cool down. Eventually the tape and all symbols will have the same temperature and
can no longer exchange thermal energy. A symbol which has the same temperature
as the tape is no longer readable and disappears. Thus, the head must always write
symbols which are at least as hot as the tape. If this is no longer possible, no symbols
can be written any more.

62

Self-stabilizing Automata

Figure 2 Operations of an energy-aware Turing Machine

Writing a symbol to the tape transfers thermal energy to the symbol until head
and symbol have the same temperature. This implies that hot heads write hot sym-
bols and cooler heads write cooler symbols. This is in line with the second law of
thermodynamics because the thermal energy flows from a warm entity (the head) to
a cooler entity (the symbol) until both having the same temperature.

If the head is reading a symbol, it cools down until the head and symbol have the
same temperature. The thermal energy lost by the head in this process is transferred
to the tape. Thus, the cooler the symbol that is being read, the cooler the head be-
comes while reading it. This implies that the head cannot read a cold symbol and
write a hot symbol afterwards. The energy of a freshly written symbol is always
higher than the energy of any symbol written afterwards.

The head cannot move until eternity because it constantly looses thermal energy
to the tape. Eventually the only possible movement is downwards because this is the
position with the lowest potential energy and the head cannot spend more thermal
energy on moving upwards. Eventually, the machine will fall back to its initial state.
The head falls down to the lowest position and all symbols disappear once they
reach the same temperature as the tape.

The amount of energy that is lost (i.e. transfered between head or symbols and
tape) determines the stabilization time. This energy loss must always be higher than
0 to avoid a perpetuum mobile. The higher the loss, the faster will the head return
to its initial position and the faster will erroneous symbols disappear. On the other
hand, high energy losses mean that the system will forget fast, i.e. its view on past
sensor values is very narrow, because old values disappear very quickly.

The machine presented so far is in line with the rules of thermodynamics. How-
ever, it is not very useful yet. The machine has simply a limited time for execution.
After this time all parts of the machine have the same temperature and the machine
resets to its initial state. In the next chapter we will therefore extend our machine to
read sensor values and control actuators.

63

T. Weis and A. Wacker

5 Sensors and Actuators

The rules of thermodynamics cited so far apply to closed systems. However, if we
allow our machine to receive sensor data from outside the machine and to control
actuators outside the machine, the system is no longer closed. We assume that the
machine increases its thermal energy when it receives data (from a sensor) and emits
thermal energy when it sends data (to actuators). As long as sensors continuously
send more data, the machine does not necessarily cool down to the point where it
falls back to its initial state (head at the lowest position and no symbols on the tape).

Our machine is in fact a three tape Turing Machine as shown in Figure 3. The
middle tape is the working tape. The first one is the input tape and the last one the
output tape. A sensor is sending input data as a finite sequence of symbols. If the
machine is in a receiving state (which is the case when the head is at the initial
position) these input symbols are copied on the input tape. The head moves along
all received symbols and they transfer thermal energy to the head. Thus, the energy
level of the machine is increased and it can read and process the data.

Figure 3 3-Tape Turing Machine

The machine can write symbols on the output tape. When the machine falls back
to the initial position, it can receive new input and it sends its output. The symbols
on the output tape are sent to actuators. By doing so these symbols disappear from
the output tape because their thermal energy is sent to the actuators. The machine
looses energy by sending.

The energy limits the number of symbols the machine can send. This shows
already one great advantage of this machine. The damage its output can cause is
limited by the input it receives. As long as sensors are sending only at a limited fre-
quency and with limited thermal energy, the machine cannot run berserk by flooding
the system with bogus symbols. For example, accidental distributed denial of ser-
vice attacks are impossible because of energy restrictions. This argument holds for
all programs executed by this machine.

6 Self-stabilization

The inability of our machine to store data forever (symbols loose energy to the tape)
and its inability to amplify the energy of stored data (cannot read a cold symbol

64

Self-stabilizing Automata

and write a hot one) is the key to its self-stabilization property. We assume that the
machine is executing a program that is correct if no errors occur. Possible errors are:

• Tape symbols are accidentally added, removed, or modified
• The head position is accidentally changed
• Sensor data is lost, duplicated, modified or its ordering is changed
• Too much energy is sent to the machine
• The machine has been loosing to much energy

If anything is wrong with the current state of the machine, then a certain thermal
energy is attached to this wrong information. It could be a wrong symbol or a wrong
head position. After a constant time the head must move back to its initial position
and after a constant time all symbols have cooled down and disappear. All informa-
tion disappears after a constant time and it cannot be refreshed, i.e. its energy cannot
be amplified. Furthermore, the energy of derived information cannot be higher than
the energy of the source information, because the head cannot write a symbol that is
hotter than any other symbol read or written before. After a constant time it does not
matter whether some information was wrong or not because the information itself
and all information derived from it disappears. What remains has necessarily a high
energy level and is therefore fresh information that is in no way dependent on the
wrong information and therefore correct. The only source for fresh information is
new sensor readings. Thus, after a constant time all erroneous information is gone
and only fresh and correct information remains in the machine.

Our machine greatly simplifies the development of self-stabilizing algorithms.
The developer does not have to prove that his algorithm can recover from every pos-
sible error. He must prove that the algorithm executes correctly on our machine in
the absence of errors. If this is the case, the self-stabilization property is guaranteed.
This is a great advantage over current coding techniques where the self-stabilization
property requires a manual proof.

However, the proof of correctness is now a bit more complex than with normal
Turing Machines. The proof of correctness must take the energy transfer into ac-
count. In addition, no sane programmer will develop an algorithm for execution
on a Turing Machine. Therefore, we are working on a model-driven development
approach [1]. The developer describes his program on a very high-level program-
ming language [2]. This program is then automatically translated into a program for
our machine. This program can now be tested on a simulated machine. Testing is of
course no proof of correctness, but in practice testing is easier to do than correctness
proofs.

A disadvantage of our machine is that it is even less efficient than normal Turing
Machines. The CPU must calculate the energies whenever the head moves, reads,
or writes. Thus, it is no platform on which you would execute a word processor
or enterprise applications. However, a machine that is inherently forgetful is not
useable for this kind of applications anyway.

For control applications, however, our machine is well suited. A constant per-
formance factor is often tolerable. Furthermore, the forgetfulness of our machine is
no problem here. When a control application receives input, it calculates its output

65

T. Weis and A. Wacker

Figure 4 Development process

based on the new input and a fixed amount of previous inputs. Very old inputs are
not required, which is good, because our machine has already forgotten these old
inputs and every data derived from them.

7 Implementation and Simplification

So far the energy-aware Turing Machine is a theoretical concept. To turn it into
something useful, we must execute the energy-aware Turing machine programs on
a real machine. Although it would be an interesting challenge to build a thermo-
dynamic machine which adheres to our formal specification, this is of course not a
practical thing to do. Instead, we see two possible options: A software solution and
a silicon hardware solution.

In the first case, the programs are executed in a simulated energy-aware Tur-
ing Machine. This is the easiest thing to do and ensures that the program is self-
stabilizing as long as the underlying software is stable. However, if the simulator
is not working correctly or if the operating system crashes then the entire system
will not be self-stabilizing. The more radical approach is to build hardware in sil-
icon which behaves like an energy-aware Turing Machine. In this case there is no
software layer (simulator or operating system) that could fail. Such a system would
really be self-stabilizing. Since our expertise is not in chip design, we are working
with the simulator approach currently.

In both cases, the energy-aware Turing Machine is hard to implement because it
needs much computation to calculate the energies as floating point numbers. There-

66

Self-stabilizing Automata

fore, we simplified the energy-aware Turing Machine without sacrificing its self-
stabilization properties. First of all, energy is quantized to represent energy levels as
integers. Furthermore, the potential energy of the read/write head can be ignored. It
has only been introduced to make sure that the head falls back to the initial position
once it lost too much thermal energy. In an implementation, we simply check after
each step whether the head energy level is too low and move it back to the initial
position.

The symbols are constantly transferring energy to the cooler tape until they dis-
appear. We implement this by storing for each symbol the step in which it has been
written and its energy level at this time. If the head later on reads the symbol, we
subtract one from the energy level for every step that happened in between. If the
resulting energy level is 0 or below, the symbol is erased.

It could happen that a memory error changes the step or energy level stored for
some symbol. This does not harm the self-stabilization property as long as all of
these values are expressed as numbers with a fixed amount of bits. Thus, if a memory
error accidentally increases the energy level of a symbol, the additional energy is
limited by the amount of bits. After a constant time this energy has been transferred
to the tape, the symbol disappears, and the system can stabilize again. The fewer
bits we use, the shorter is the self-stabilization time. However, the forgetfulness of
the machine increases when the number of bits decreases. The best number of bits
to use is therefore a trade-off between stabilization time and forgetfulness.

8 Related Work

In our approach we are extending a three-tape Turing Machine which is known as
Persistent Turing Machine (PTM). PTMs [3, 4] are a minimal extension of Turing
Machines (TMs) [5] that express interactive behaviour providing a natural model
for sequential interactive computing. A PTM has three tapes: a read-only input tape,
a write-only output tape, and a persistent working tape which is preserved among
interactions, i.e., among successive computations of the PTM.

Self-stabilizing algorithms have been introduced by Dijkstra in 1974 in his semi-
nal paper on a self-stabilizing token passing algorithm [6]. A self-stabilizing system
recovers from any transient fault within a bounded number of steps [7] provided
that no further fault occurs until the system is stable again. The maximum number
of steps required to bring the system back into a legitimate state is called stabiliza-
tion time. Self-stabilization is usually proven by showing that the system satisfies
convergence (started from an arbitrary state it reaches a legitimate state within a
bounded number of steps) and closure (once the system has reached a legitimate
state, it stays in the set of legitimate states) if no faults occur.

Many self-stabilizing algorithms utilize soft state, a design pattern which is
known from many network protocols [8]. One possible way to implement soft state
is leasing. In this case, the state of the system is only leased and has to be periodi-
cally refreshed to remain valid. If it is not refreshed in time (i.e., if it expires), it is

67

T. Weis and A. Wacker

invalidated and usually deleted. For example, we used subscription leasing to realize
self-stabilizing publish/subscribe [9]. A generic implementation of self-stabilization
is possible with a precautionary periodic reset [10]. In this case, all state is regularly
deleted and rebuilt from an initial configuration. This ensures that corrupted state is
eliminated while the correct state is established.

9 Outlook and Conclusions

We presented a modified Turing Machine which features an energy concept which is
based on the laws of thermodynamics. Every program that executes correctly on this
machine in the absence of errors is guaranteed to be self-stabilizing in the presence
of errors. This greatly simplifies the development process since no manual proofs of
the self-stabilization property is required.

They key to the self-stabilization property is that derived information has always
a lower energy than the information it has been derived from. Together with the
inability to amplify the energy of information we get the desired self-stabilization
property. However, here we are more restrictive than the laws of thermodynam-
ics would have required. Perhaps other machines exist which have the same self-
stabilization property, but are less restrictive in some ways.

It is an open question whether the machine presented in this paper is powerful
enough to execute all possible self-stabilizing algorithms. It may be the case that
self-stabilizing algorithms exist which cannot execute correctly on our machine. So
far we can only state the converse: if it executes correctly, then it is self-stabilizing.

Other open problems are related to the software development process. How
can one easily develop applications for this kind of machine? To obtain the self-
stabilization property the programs must always be executed under the control of
this machine. Today’s CPUs would waste much time on this. Perhaps specialized
hardware could significantly improve the speed of execution.

In the future we will work on the software development process to ease the de-
velopment of self-stabilizing control applications. Furthermore, a more formal de-
scription of the machine will be subject to our next publication.

References

[1] T. Weis, H. Parzyjegla, M. A. Jaeger, and G. Mühl. Self-organizing and self-
stabilizing role assignment in sensor/actuator networks. In Proceedings of
DOA 2006, volume 4276 of Lecture Notes in Computer Science, pages 1807–
1824. Springer, 2006.

[2] M. Knoll, T. Weis, A. Ulbrich, and A. Brändle. Scripting your home. In
Proceedings of the 2nd International Workshop on Location- and Context-
Awareness (LoCA 2006), pages 274–288, Dublin, Ireland, May 2006.

68

Self-stabilizing Automata

[3] Dina Q. Goldin. Persistent turing machines as a model of interactive com-
putation. In FoIKS ’00: Proceedings of the First International Symposium
on Foundations of Information and Knowledge Systems, volume 1762 of Lec-
ture Notes In Computer Science (LNCS), pages 116–135, London, UK, 2000.
Springer-Verlag.

[4] Dina Q. Goldin, Scott A. Smolka, Paul C. Attie, and Elaine L. Sondereg-
ger. Turing machines, transition systems, and interaction. Inf. Comput.,
194(2):101–128, 2004.

[5] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936.

[6] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[7] Shlomi Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.
[8] D. Clark. The design philosophy of the darpa internet protocols. In SIGCOMM

’88: Symposium proceedings on Communications architectures and protocols,
pages 106–114. ACM, 1988.

[9] G. Mühl, M. A. Jaeger, K. Herrmann, T. Weis, L. Fiege, and A. Ulbrich. Self-
stabilizing publish/subscribe systems: Algorithms and evaluation. In Proceed-
ings of Euro-Par 2005, volume 3648 of Lecture Notes in Computer Science
(LNCS), pages 664–674, Lisbon, Portugal, August 2005. Springer.

[10] Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Transaction on
Computers, 43(9):1026–1038, September 1994.

69

for Service Assignment in Wireless Sensor
Networks

Tales Heimfarth and Peter Janacik

Abstract Given the scarcity of energy in wireless sensor networks (WSNs), in-
network data processing by distributed, cooperating services is often used to reduce
the amount of information that has to be routed to the base station and thereby to
reduce communication and energy consumption. However, to minimize the amount
of communication between services and their requesters, the locations of services in
the network have to be selected carefully. Therefore, this paper proposes an efficient
biologically-inspired heuristic for service assignment in WSNs. In order to reduce
the amount of information exchange necessary for our heuristic, we use a concept
observed in ant colonies that utilizes only local information. We model packets as
ants (depositing pheromones at the visited nodes), services as food sources and re-
questers as formicaries. To optimize an objective function (reduction of commu-
nication distance between services and requesters), an explorer agent makes local
service assignment decisions based on solely local information: the pheromones de-
posited by the ants. Furthermore, our paper presents the formal definition of the
problem of service assignment and a thorough analysis and discussion of the results
of our experiments, which show the efficiency of our approach.

1 Introduction

Wireless sensor networks (WSN) consist of a large number of embedded sensors
connected via wireless links that are deployed in the monitored environment. Each
node in such a network is equipped with a small processor, constrained memory, a
set of sensors and, in some application examples, actuators. One key point of such

Tales Heimfarth
Federal University of Rio Grande do Sul, Brazil, e-mail: theimfarth@inf.ufrgs.br

Peter Janacik
University of Paderborn, Germany, e-mail: pjanacik@uni-paderborn.de

Please use the following format when citing this chapter:

Heimfarth, T. and Janacik, P., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-Inspired
Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston: Springer), pp. 71–84.

Experiments with Biologically-Inspired Methods

Tales Heimfarth and Peter Janacik

networks is the energy efficiency: since it is not feasible to replace batteries after
deployment, the energy must be carefully managed in order to increase the life time
of the system.

In-network data processing techniques have been successfully employed to im-
prove considerably the energy efficiency of the network. Instead of letting each sin-
gle node send its raw sensor data to the base station, which incurs a high amount
of multi-hop traffic, the idea is to process the data locally in order to compute a
higher level result that will be transmitted to the base station. Since nodes are only
equipped with a very constrained hardware, this in-network processing, carried out
by cooperating services, is distributed among neighboring nodes. Therefore, there
is the need for an adequate abstraction implemented by the operating system (OS),
which offers the functionality of dynamic service re-assignment to the application.
This means that the OS should control the migration of the services.

We developed NanoOS [5], an OS for wireless sensor networks with the aim
of supporting collaborative processing. In this work, we formalize the problem of
allocating the mobile services to nodes of our network with the objective of reducing
the communication overhead. Given a network topology graph and a task/service
interaction graph, we aim to map the services to the nodes of the network targeting
the minimization of the objective function that in our case is the communication
cost. Due to the fact that our problem is NP-complete, we introduce a heuristic,
responsible for the dynamic assignment of the system services within the sensor
network.

This paper is organized as follows: Section 2 reviews the state-of-the-art in ser-
vice assignment for WSNs, before Section 3 presents the problem definition. Sec-
tion 4 introduces our ant-based service assignment heuristic, which consists of a
basic and extended version. The results of the evaluation of our heuristic are then
described in Section 5. Finally, Section 6 presents the conclusions.

2 Related Work

In this section, existing approaches dealing with migration of services in wireless
sensor networks will be presented. Although there is a wide range of middleware
and virtual machine approaches, at this moment, the majority of operating systems
for WSNs do not provide service assignment mechanisms. Given the fact that most
task/service assignment mechanisms used in WSNs are online (deciding during run-
time), code mobility is necessary for such approaches.

In the Sensorware [3] virtual machine, the application consists of scripts de-
ployed on a subset of network nodes. Scripts function like state machines, influ-
enced by external events. Scripts may replicate, so that the application has the con-
trol of the service assignment, which enables agents to have individual strategies,
implemented by the application programmer. In contrast, in our approach, the oper-
ating system controls the migration of services according to an OS location policy
optimizing a given objective function. This disburdens the user from having to im-
plement a migration policy in each application.

72

Experiments with Biologically-Inspired Methods for Service Assignment in WSN

MagnetOS [1] uses the two online algorithms NetCenter and NetPull for deci-
sions on system component assignment. NetPull monitors communication at the
link level and migrates components one hop towards the neighbor with the greatest
communication. NetCenter, on the other hand, relies on network-level information
and migrates objects to the node hosting the component(s) they communicate the
most with, possibly over multiple hops. Differently from our system, NetCenter
transfers the system components directly to the node hosting the object with the
highest interaction. This may lead to a non-optimal assignment and oscillations,
since the sum of the communication coming from other objects at different nodes
may exceed the communication traffic generated by the single component chosen as
migration endpoint by MagnetOS.

In Cougar [8], queries are broadcasted to all nodes of the network and results are
aggregated and forwarded to a given leader node. The query optimizer, located on
the gateway node, is responsible for analyzing the queries and generating a good
query execution plan, which contains the data flow inside the node and network.
As this query optimizer-based approach relies on a centralized node, this and our
approach are not comparable.

3 Problem Definition

In our approach we are optimizing the position of the services of the system through
migration. Our heuristic dynamically re-assigns the services to nodes in the system
in order to reduce the communication overhead. To enable the evaluation of our
heuristic, we define the problem to be solved in each steady state as a formal opti-
mization problem.

The system is represented by two graphs. The first is the network (resource)
graph and the second one is the processing thread (task/service) graph (similar to
the task interaction graph, TIG). The ad hoc network is modeled by an undirected
graph G = (V,E), where V is the set of wireless nodes and an edge {u,v} ∈ E if and
only if a communication link is established between nodes u ∈ V and v ∈ V . The
two nodes in this case are neighbors.

For each link, a weighting function attributes a positive weight. w : E → R
+.

This weight measures the quality (or goodness) of a wireless link. We define for
each edge not in the graph ({u,v} /∈ V), w(u,v) = ¥. The quality of the link is
calculated combining the following parameters: transmission success rate, received
signal strength and history of the link. The statistic-based observation of transmis-
sion success is a good indication of the future success rate, nevertheless it reacts
slowly to changes and at beginning has no data to be calculated. The received sig-
nal strength indication makes quick indications possible, but it is not very precise.
Therefore, we combine these two parameters. Moreover, in order to prioritize stable
links, the history is also used. We use normalized link metrics, where 0 means very
good link and 1 poor one. We call the link metric virtual distance.

For each node, the weighting function r describes the amount of resources avail-
able at a node. r : E → R

+. This models the resource capacity of the node.

73

Tales Heimfarth and Peter Janacik

Fig. 1 Example of an instance of service assignment problem.

The processing thread (task/service) graph T = (M,C) models the communica-
tion requirements between the diverse processing threads of the OS and application.
M is the set of tasks and services (processing threads) running at the moment in
the system and an edge {m1,m2} ∈ C when there exist an interaction (with com-
munication) between the executable units m1 and m2. For each interaction c ∈ C,
a function b attributes a positive weight that measures average of traffic between
the tasks/services. b : C → IR+. This function defines the amount of interaction be-
tween two modules of the system. Moreover, the function e : M → IR+ attributes the
amount of resources necessary for the execution of each task/service. Finally, the
function f : M → V defines the fixed assignment, i.e., the tasks that are statically
assigned to a determined node and should not be moved.

The service assignment in wireless sensor network problem consists of allocat-
ing the tasks and services of the task graph T to the nodes of the network graph G,
minimizing the amount of communication. The amount of communication is mea-
sured by the sum of all products of the amount of communication times the distance
of the communicating entities. This distance is measured in terms of our link met-
ric. A schematic diagram of the input and result of the assignment is shown in the
Figure 1.

The figure 2 presents the formal definition of the optimization problem.
The problem is NP-complete (for a similar NP-complete allocation problem, see

[4]), since it generalizes the well-known NP-complete quadratic assignment Prob-
lem (QAP) [7]. The QAP is a special case of our problem when the services are
in the same number as the processors and just a single service (anyone) may be
assigned to each processor.

4 Ant Based Service Assignment

In this section our heuristic to distribute the services in the sensor (or ad hoc) net-
work will be presented.

74

Experiments with Biologically-Inspired Methods for Service Assignment in WSN

Input: A processing thread (task and service) graph with weighted nodes, weighted links,
and fixed assignment function (T,b,e, f) and a network graph with weighted nodes and
links (G,w,r)

Constraints: For every input instance (G,w,r,T,b,e, f), Let S = {s1,s2, ..,sn} = {s ∈
M| f (s) = /0} be the set of mobile services (without a fixed assignment). The valid solu-
tion space is given by:
M (G,w,r,T,b,e, f) =
= {(g1,g2, ..,gn) ∈V n|∀v ∈V,å{i∈IN|gi=v} e(si)+å{m∈M| f (m)=v} e(m) ≤ r(v)}
The tuple (g1,g2, ..,gn) is an assignment and has the following meaning: service si is as-
signed to node gi. The constraint assures that the services and tasks assigned to the node v
do not request more resource than the availability on the node.

Costs: For every assignment (g1,g2, ..,gn) ∈ M (G,w,r,T,b,e, f), the cost is calculated as

follows: Let the function q : M →V be: q(m ∈ M) =

{
f (m) if f (m) �= /0

gi|si = m otherwise
cost((g1,g2, ..,gn),(G,w,r,T,b,e, f)) = å

{m1,m2}∈C

b({m1,m2}) ·D(q(m1),q(m2)) (1)

Where D(u,v) is the cost of the multi-hop shortest path employing the virtual distance be-
tween nodes u,v ∈V .

Goal: Minimum

4.1 Basic Heuristic

In our approach, we are optimizing the position of the services through migration,
i.e., we try to find the optimal configuration where the communication overhead
caused by the remote requests is minimized and to react to demand and topology
changes adequately. In order to solve this online discrete optimization problem, we
decide to use an ant-inspired algorithm. We assume, in our heuristic, that an initial
distribution of the services in the network already exists. In order to describe our
heuristic, some additional definitions are necessary.

The set P contains the types of all possible services of the system. Each ser-
vice s is an instance of same type p ∈ P. Every task a ∈ {M − S} has no type.
Let r ∈ M be the requester (a service or a task) of some service s ∈ S. The service
state Si

r represents the connection between the requester r to the service s (a flow
of communication, generated by the requests and responses). The set of all flows
of the system we will call W . In our system, each node v ∈ V has a pheromone
table Pv = [pv

Ss
r
]r∈M,s∈S, where pv

Ss
r
∈ [0,1]. This pheromone level represents the re-

quest rate (and traffic) made by the requester r to the service i that is crossing the
node v. In our approach, all nodes are responsible for the service assignment, since
each node’s evaluation is based on its local view, in order to reduce communication
costs. Moreover, the needed information is constantly changing, due to frequent
pheromone updates.

Using an analogy with the ant foraging behavior [2], the services in our approach
are the equivalent of the food source. The calls made by the requesters are the agents
(or ants) and the requesters are the formicaries. The wireless links form the pathway
used by the ants. While the requests are being routed to the destination service, they

75

Fig. 2 Formal Definition of the Optimization Problem.

Tales Heimfarth and Peter Janacik

leave pheromone on the nodes. The pheromone tables in each node are updated

according to the following equation: pSi
r
(t + 1) =

p
Si
r
(t)+d p(h)

1+d p(h) where the d p(h) is
the variation of the pheromone and it is a function of the size of the packet. After
the introduction of some basic concepts of our heuristic, we will present here the
component policy of our migration mechanism:

Transfer policy: In our heuristic, each service is independent and may decide it-
self about starting a migration. The target of a service migration is every node
with sufficient resources.

Selection policy: The selection policy is based on a threshold q that is compared
to the measured current communication overhead of the service s. If it is above
q , the service s is selected to migrate.

Location policy: The location policy decides about which node should receive a
migrating service. We will describe it in the next section.

Information policy: Our heuristic uses almost just passive information gathering
by means of pheromone tables. We avoid any broadcasting or proactive informa-
tion dissemination to save the scarce energy resources.

The general idea is to migrate the service to some node that rely in some requests
flow (path) or near to it, in the direction of a requester. Each service has several
flows coming from the diverse requesters. In order to determine which node should
receive the service s, an explorer packet will be used. Its next hop is defined based
on the pheromone value of the neighborhood and its final location will eventually
be the target node for the migration of s.

We will describe the two main phases (exploration and settlement) of the selec-
tion of the new target node for the service s through the migration of the exploration
packet.

Exploration Phase
In this phase, the exploration packet will migrate along the nodes of the wireless

sensor network in order to find a new target position for the service s. The explo-
ration phase ends and the settlement phase starts when the exploration packet has
migrated a determined number of hops (allowed_h) or a loop occurred (detected
using a history list history).

After the deployment of the exploration packet, its migration is controlled by
means of attraction forces. Let u ∈ V be the actual location (node) of the explorer
packet. Nghu is the set of neighbors of u, and d ∈ Nghu is a neighbor of u.

bs
u,d =

⎧⎪⎨
⎪⎩

åx∈M pd
Ss
x

åy∈(Nghu−l)åx∈M py
Ss
x
+pot_pher

if d �= l

pot_pher
åy∈(Nghu−l)åx∈M py

Ss
x
+pot_pher

otherwise
(2)

bs
u,d represents the sum of the pheromone of all flows coming through node d

to the service s normalized over the total amount of pheromone related to requests
to the service s in the neighborhood. It represents relatively how much of the traf-
fic directed to the service s is using the node d as path (proportional use of d for

76

Experiments with Biologically-Inspired Methods for Service Assignment in WSN

the requests). The bs
u,d , in the exploration phase, will act as a force attracting the

exploration packet to the corresponding node.
The potential pheromone (pot_pher) is the sum of all other pheromones re-

lated to the service s, coming from the neighbors not selected as next hop for the
exploration packet pak, when leaving the node hosting s. It is used to estimate the
level of pheromone potentially caused by those flows if the service would migrate
to the node being evaluated. An example can be seen in the Figure 3.

Fig. 3 Example showing the new potential path of a flow when service would migrate to the next
hop.

The main idea is to predict which situation would occur if the service would
migrate to the current exploration packet position and which would be the next
hop for a possible migration. The assumption made here is that the request flows
not attended by the first migration decision would have their path size increased
exactly by the pathway executed by the exploration packet. This means, although the
pheromone level from these flows would not appear to the exploration packet when
far away from the node (v) hosting s, they should be considered when deciding the
next exploration packet hop. This is shown in Figure 3, where the exploration packet
is in the node u. It uses the real pheromone of the node j and, in the case of node
v, the potential pheromone level measured by the first migration of the exploration
packet. The potential pheromone level is the sum of all pheromone levels related to
the service s that are in all other nodes than u because u was selected as target for the
first exploration packet migration. In this example, the potential pheromone level is
exactly the same level of the pheromone on node h. It will be formally defined later
on.

The next hop of the explorer packet is selected using the equation 3. We call j
the selected node.

ei = max{d∈Nghu}(b
i
v→d),d ∈ Nghu (3)

Settlement Phase
After the exploration of possible candidates to host the service s, this phase is

responsible to find the appropriated node with enough resources to host the service.
We call u the actual node of the exploration packet.

The idea of this phase is to evaluate whether there are enough resources at the
candidate node to host the service s. In the positive case, the service will migrate to

77

Tales Heimfarth and Peter Janacik

the node. In the negative one, the neighborhood will be checked and, according to
the actual situation of the neighborhood, a neighbor may be selected or the explo-
ration packet may migrate to the last visited potential candidate (retrieved from the
history field), to search there for the final destination of the service s.

The following procedure is executed in the settlement phase: The current node
u is tested whether it may host the service s. The test consists of checking whether
node u has enough free resources. The formalization of the test can be seen in the
following equation: e(s) ≤ r(u)−å{m∈M|q(m)=u} e(m) If the resources are enough,
the settlement phase is terminated and the node u sends a message to the service s to
trigger the migration process. Otherwise, the same test is made in all the nodes of the
direct neighborhood of u. The virtual distance is used for ordering the test process.
Nodes within smallest virtual distance are tested first. The process ends when a
suitable node is found, i.e., the node with enough resources and the smallest virtual
distance to u is selected. We denote this node as f . If w(u, f) < w(u, last(history)),
i.e., the virtual distance between u and f is smaller than the virtual distance between
u and the last visited node by the exploration package (before reaching u), the node g
is selected definitively to be the new host of s. A message is sent to s in order to start
the migration. Otherwise, the exploration package is sent back to the last(history)
node. The node u is deleted from the history field and the settlement procedure
starts again.

The procedure described above repeats until an appropriate node is found. In the
rather improbable case of not finding any new node to host the service, the migration
is canceled.

4.2 Extended Heuristic

This section identifies a problem caused by the greedy nature of the basic heuristic
and presents an improvement to overcome possible adversarial situations. For the
sake of simplicity, we assume in the following example that allowed_h=1, i.e., just
one hop migrations are allowed. Nevertheless, the problem occurs for arbitrary val-
ues of this parameter when more than one nearby located requesters use the same
service, but due to the employed routing algorithm, the requests are routed through
different paths. An example of such situation is depicted in Fig. 4, where requesters
r1, r2 and r3 are accessing the service s in the node u. For a straightforward com-
munication cost calculation, we assume that the average bandwidth utilization is
proportional to the pheromone deposited at a node inside the flow path. Thus, the
total communication cost is 1.135 (using equation 1).

We analyze the migration that would be decided by the basic heuristic. As the
pheromone value of node h is higher than the values deposited at nodes j and k
(separately), the exploration packet is sent to node h. Suppose that allowed_h=1,
the service would migrate to node h. The total communication cost of the system
changes to 1.22. This result shows that the heuristic, in such adverse situation, se-
lects the wrong node to migrate to, increasing the total communication cost of the

78

Experiments with Biologically-Inspired Methods for Service Assignment in WSN

Fig. 4

system. This happens because of the lack of information over not directly-connected
parts of the network (each node has just the local view of the system).

The main idea of the improvement is not to migrate the service to the neighbor
with the highest amount of requests (highest flow) as in the basic heuristic, but to the
neighbor whose flow, in some part, is crossing nodes near to other flows requesting
the same service. If the defined metric (virtual distance) has (geographical) norm
properties, this will be equivalent to migrating the service to the geographical di-
rection from where the highest amount of requests is coming. Two flows related to
the requesters r1 and r2 (see Fig. 4) are transversing neighboring nodes in their path
to s, thus, they should attract the service instead of r3. We define that such flows
transversing neighboring nodes are called correlated flows.

The concept of the correlated flows is used in the exploration phase in order
to guide the migration of the exploration packet. Instead of counting solely the
pheromone deposited at each neighbor when analyzing the amount of pheromone
of a neighbor, the sum of the pheromone deposited at the node with all correlated
pheromone is used to guide the migration. Therefore the equation 2 is modified as
follows:

bs
u,d =

flows using d︷ ︸︸ ︷
å

x∈M
pd

Ss
x

+

correlated flows︷ ︸︸ ︷
å

x∈M
å

z∈M
å

g∈Nghv−{d,l}

pg
Ss

z
· �pd

Ss
x
 ·F(Ss

z,S
s
x)

normalizer
(if d �= l) (4)

The first term of the equation is the same as in eq. 2, i.e., the sum of all requests
coming to service s through node d. The second term of the numerator is the sum
of the pheromone generated by correlated flows of the flows present at node d. The
function F tests whether Ss

z and Ss
x are correlated flows, and the ceiling �pd

Ss
x
 checks

whether the connection Ss
x exists in the node d (i.e. pd

Ss
x
> 0). The denominator nor-

malizes bs
u,d (0 ≤ bs

u,d ≤ 1). The next hop of the exploration packet is selected using
equation 3.

79

Instance of the problem that will result in a wrong migration decision due to greedy behavior.

Tales Heimfarth and Peter Janacik

5 Results

In this section, we present the simulation results of our basic and extended service
assignment heuristics. The simulations were performed using the Shox [6] simula-
tor, an event-based wireless network simulator. For our simulation, we assume fixed
transmission power, bidirectional links (which is achieved in reality by ignoring uni-
directional links) and Friis Free Space propagation model for isotropic point source
in an ideal propagation medium for RSSI calculations. The link metric used is based
on the RSSI and each node only offers enough resources for running a single ser-
vice and task. Tasks request different, randomly selected services. The bandwidths
needed in the different communications were randomly selected.

5.1 Simulation Scenarios and Evaluation

Table 1 provides an overview of the simulated scenarios. The small scenarios were
selected since they also allow the calculation of the optimal solution. For large sce-
narios, it is not possible to calculate the optimal (reference) solution of our discrete
optimization problem due to its computational complexity. Nevertheless, we de-
cided to make an example simulation of a large scenario to show that its behavior is
similar to small instances.

For the generation of the task/service graph for each task, a random number of
services was selected. The tasks request those services with a random bandwidth
requirement (normalized). Dijkstra’s shortest path algorithm was used for finding
routes between requesters and the services.

Scenario Name Field Size
(m2)

Number
of Nodes

Radio
Range

Connection
Probabil-
ity

Node den-
sity

Average
Degree
(Theo-
retic)

Num.
Services,
Requesters

Small Scenarios
small-sparse-sd 80x60 10 28 0.9 0.002 5.13 8, 6
small-dense-sd 80x60 10 43 1 0.002 12.1 8, 6

Large Scenarios
large-sparse-sd 102x77 100 13 0.9 0.013 6.7 20, 40

The presented scenarios were evaluated using different algorithms. For the small
scenario, the optimum solution was calculated using a branch-and-bound algorithm.
For all scenarios, our basic and extended ant-based service assignment heuristics
were simulated. Moreover, we decided to calculate the cost of a completely random
assignment, i.e., the tasks and services are randomly distributed among the nodes of
the network.

80

Table 1 Overview of the different simulation scenarios.

Experiments with Biologically-Inspired Methods for Service Assignment in WSN

5.2 Experiments

We executed 40 experiments for each scenario presented in Table 1. In the next
sections, we will present and analyze the results of the experiments.

Optimal Assignment Cost
In this section, we will analyze the results achieved with the optimal cost as-

signment. Figure 5(a) presents the optimal service assignment cost for the small-
sparse-sd and small-large-sd scenarios1. As expected, denser scenarios exhibit a
smaller assignment cost. This can be explained by the fact that better links (lower
cost) are available for the communication between tasks and services, reducing the
total cost. Moreover, due to the higher amount of neighbors (higher node degree),
assignments that yield a high amount of costs in sparse environments may be attrac-
tive in dense environments because of the existence of multiple new links.

Experiment Results
This section presents the outcome of our 40 experiments for the presented sce-

narios. In Figure 5, the results for our three scenarios are depicted. For the small
scenarios, each result is normalized against the optimal assignment. For the large
scenario, we present the nominal result.

As we can see in Figures 5(b) and 5(c), our heuristic found the optimal solution
in several cases. Moreover, for the vast majority of cases, the heuristic has a much
better performance than the random initial assignment. The extended heuristic and
the basic one have also a very similar behavior, nevertheless, for some experiments,
the extended one has a much better performance than the basic. The reasons for
these outcomes will be discussed further below.

Figure 5(d) shows the results for a large scenario. Due to the fact that we do
not have, for large scenarios, a reference approach, it is not possible to make state-
ments about the absolute performance of the algorithms. Nevertheless, it is possible
to notice that the heuristics could find a much better cost than the initial random
assignment. Moreover, the behavior of the extended and basic heuristics are similar
to the one observed in the small experiments.

Heuristics’ Assignment Costs
In this section, the mean value of the achieved costs for each heuristic for all sce-

narios will be presented. The cost for the absolute assignment of our test scenario
is shown in Figure 6. The random assignments and basic and extended heuristic as-
signments have the same tendency of the optimum: for sparse networks, they deliver
always an assignment with higher cost. This is expected due to the relation between
the assignment cost and the link costs, and for sparse environments, the average link
cost increases.

In Figure 6(a), the different costs are shown together for the small scenarios. As it
can be seen in the figure, our basic and extended heuristics have a good performance,

1 For the service assignments, the terms total communication cost (presented in the figure) and
assignment cost have the same meaning.

81

Tales Heimfarth and Peter Janacik

Fig. 5 (a) Optimal assignment cost of sparse and dense scenarios and (b–d) communication cost

Fig. 6 Assignment costs for the different heuristics with small and large problem size.

82

results of the realized experiments.

(a) Optimal assignment cost (b) Communication cost small-sparse,
normalize

(c) Comm. cost small-dense, norm. (d) Comm. cost large-sparse

(a) Absolute, small (b) Absolute, large (c) Normalized, small

Experiments with Biologically-Inspired Methods for Service Assignment in WSN

not far from the optimal solution. The basic and extended heuristics have a very
similar performance. We discuss the reasons and the performance difference further
below.

In Figure 6(b), the results of our large scenario are depicted. It is possible to see
that they are very similar to the small scenario, improving our confidence that the
heuristics could find good solutions for small as well as for large scenarios.

Figure 6(c) shows the normalized results for the small scenarios. The optimal
assignment is used as reference. It is possible to notice that, for all cases, a very
small difference could be verified for sparse and dense scenarios. The basic heuristic
has an average cost of 1.44 times the optimal cost for sparse environments and 1.5
for dense ones. The extended heuristic shows a small improvement: 1.41 for sparse
and 1.43 for dense scenarios. This means that the cost of the basic heuristic was
about 2% higher in sparse scenarios and 5% in dense scenarios. A similar behavior
has been found in the large scenario.

As it can be observed in Figures 5(b) and 5(c), the basic and extended heuristic,
for several experiments, could find solutions with very similar costs and for some
experiments, the extended overcame the basic one. For the experiments where the
results were similar, we suppose that there are not flow correlations that help the
heuristic behavior. For the experiments where the extended heuristic has a much
better performance, correlations could be found and a better service migration was
realized.

The question that arises from the results is why correlations were not so com-
mon. We suppose that the reason was the selected routing algorithm together with
the influence of the Friis Free Space Model in our link metric. Because of the ex-
ponential path loss, nodes near to each other have a greater advantage in the signal
strength than others with a small higher physical distance. Due to the fact that we
are, for our simulations, relying strongly on the signal strength to calculate the link
metric, it reflects very much this exponential path loss. The Dijkstra’s shortest path
algorithm always selects the shortest path between any two nodes and does not try
to divide the load among the existing link channels. Further we are also not taking
into account the link utilization (and possible congestion). Together, such facts act
in a way that effectively just a small subset of links is used for all communications.
A kind of backbone emerges in the network. This leaves less space for our flow
correlations. We suppose that, in real scenarios, where the link metric has a more ir-
regular nature and where there are routing mechanisms that divide the transmission
effort among different routes, the extended heuristic will increase its performance
in relation to the basic one.

6 Conclusion

In this paper, we study the problem of automatic assignment of mobile services on
wireless sensor networks. We model our problem as an optimization problem and
present an efficient biologically-inspired heuristic to solve it. Given an initial assign-
ment, the heuristic is responsible to drive the migration of the services based on the

83

Tales Heimfarth and Peter Janacik

actual network/service configuration targeting the reduction of the communication
cost.

We chose to use concepts observed in ant colonies, since they exhibit several
properties that are desirable in wireless sensor networks. Hence, we propose an
extension to the heuristic: neighboring pheromone trails act together to attract the
service to the direction with higher request rate.

Simulations done using the wireless network simulator Shox showed that the
heuristic perform well. The basic heuristic has an average cost of 1.44 times the
optimal cost for sparse environments and 1.5 for dense ones. The extended heuristic
produces a slighter better result than the basic one: 1.41 for sparse and 1.43 for
dense scenarios. We suppose that this occurs due to the fact that just a small subset
of links is used to route almost all packets in the network (a backbone is formed).

For a large number of real applications, the basic heuristic yields adequate results
with very small computational cost. The extra effort necessary for the extended
heuristic may not be compensated. However, in real environments, where the link
metric does not follow in a regular way the Friis path loss and different routing
mechanisms may be used, the extended heuristic may bring better results.

Concluding, our work provides an additional piece of evidence that concepts
inspired by biology can be successfully transferred to computer systems.

References

1. Rimon Barr, John C. Bicket, Daniel S. Dantas, Bowei Du, T. W. Danny Kim, Bing Zhou, and
Emin Sirer. On the need for system-level support for ad hoc and sensor networks. SIGOPS
Oper. Syst. Rev., 36(2):1–5, 2002.

2. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to Arti-
ficial Systems. Oxford University Press, New York, NY, 1999.

3. A. Boulis and M. B. Srivastava. Design and implementation of a framework for efficient and
programmable sensor networks. In Proc. of the First International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys 2003), San Francisco, CA, USA, San Francisco, CA,
USA, May 2003.

4. David Fernandez-Baca. Allocating modules to processors in a distributed system. IEEE Trans-
actions on Software Engineering, 15(11):1427–1436, November 1989.

5. Tales Heimfarth and Achim Rettberg. Nanoos - reconfigurable os for embedded mobile devices.
In In Proceedings of the International Workshop on Dependable Embedded Systems (WDES),
Florianopolis, Brazil, 2004.

6. Johannes Lessmann, Tales Heimfarth, and Peter Janacik. Shox: An easy to use simulation plat-
form for wireless networks. In Proceedings of the 10th International Conference on Computer
Modeling and Simulation, Cambridge, England, Apr. 2008.

7. Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, 1976.

8. Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD, 31(3), September 2002.

84

Evolving Collision Avoidance on
Autonomous Robots

Lukas König and Hartmut Schmeck

Abstract Utilizing the collective behavior of a population of interacting in-
dividuals, based on rather simple local algorithms, is a promising approach
for achieving complex goals. We use an onboard online evolutionary model,
based on finite Moore automata, to develop collective behavior in an arti-
ficial swarm of micro-robots. Experiments have been made in simulation
to achieve Collision Avoidance. The model is shown to be capable to gen-
erate the desired behavior and we present experiments for adjusting the
parameters of the evolutionary optimization.

1 Introduction

As it has been shown in the past [1, 2], collective behavior can reduce the
algorithmic complexity of solving tasks, by exploiting emergent effects in a
swarm originating from the interaction between its single individuals. Mod-
ern robotics can profit from this concept. However, the emergent collective
behavior is hard to predict, and given a task, it is generally not obvious, how
programs should be designed to provide, as a collective behavior, the solu-
tion of this task. In some cases, one can develop algorithms and strategies
manually, but in general, this turns out to be hard even for simple tasks and
non-collective applications.

A common strategy for finding potential templates or strategies for the
design of a collective behavior is to observe swarms in nature. They show
adaptive behavior and, quite often, they are at least close to solving some of
their environmental challenges in an optimal way, the most prominent, stan-
dard example being the capability of ant colonies to find shortest paths [3].
By a careful analysis of the behavior of natural and artificial swarms, one can
hopefully extract appropriate local rules for collective behavior [1]. However,
there is no guarantee that the behavior of a natural swarm can be understood
sufficiently well to successfully generate the required behavior for an arti-
ficial swarm. Also, there are many conceivable tasks for artificial swarms
which do not have a related counterpart in nature.

Lukas König
University of Karlsruhe, AIFB, e-mail: koenig@aifb.uni-karlsruhe.de

Hartmut Schmeck
University of Karlsruhe, AIFB, e-mail: schmeck@aifb.uni-karlsruhe.de

Please use the following format when citing this chapter:
König, L. and Schmeck, H., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-
Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 85–94.

Lukas König and Hartmut Schmeck

One of the suggested approaches to generate local tasks for collections
of cooperating agents is to use evolutionary algorithms or genetic program-
ming [4]. In this paper, we use an onboard online evolutionary approach to
develop collective behavior in a population of robots. Onboard means that
each robot has an evolutionary program running, which is separated from
the other robots and especially is not triggered by some kind of central con-
trol with global information. Online means that during a run, the robots are
supposed not only to achieve the ability to solve a given task, but also to
solve the task in the given environment in order to evaluate the feasibility
of the current solution. So the idea is to confront collections of robots with
a problem, and to let them learn cooperatively through evolution, until an
adequate solution is found, and to solve the problem at the same time.

Based on the approach presented in [5] the evolutionary model is built on
finite Moore automata and it is defined in a general way to be applicable on
different robot platforms. Up to now it has been implemented and tested on
the Jasmine IIIp robot platform at the University of Stuttgart and in simula-
tion, where also the Jasmine IIIp robot has been modeled. The Jasmine IIIp
series is a swarm of micro-robots sized 26×26×26mm3. It can drive forwards
and backwards and turn left and right. Each robot has seven infra-red sen-
sors (two facing to the front, the others being placed in steps of 60 degrees
around, each returning values between 0 and 255) to measure distances to
obstacles and to communicate with other robots (cf. www.swarmrobot.org).

This paper extends the approach presented in [5] by using extensive sim-
ulation experiments to adjust evolutionary parameters and to show that
Collision Avoidance can be evolved.

In Sec. 2, we describe the theoretical model and the implementation of the
framework for the Jasmine III robot in simulation. In Sec. 3, results of the
evolutionary runs are presented. Sec. 4 provides a conclusion and an outlook
to future work.

The developed behavioral model for robots is based on finite Moore au-
tomata defined in a common manner [6]. The output of a state defines an
instruction to be executed. The transitions depend on the internal state and
on the information provided by the sensors. The automaton is referred to
as the genome of the robot, while the resulting behavior (i. e., the mapping
from a sequence of sensor data to the corresponding sequence of output
instructions) is called the phenotype; accordingly, the genotypic search space
Γ is defined to be the space of all Moore automata, while the phenotypic
search space Ω is the space of all behaviors. The genome can be modified by
mutation and crossover.

86

2 Model Description

Evolving Collision Avoidance on Autonomous Robots

Due to space limitations, this section only provides a brief overview of
the model and the implementation. For more detailed information see [5].

Preliminaries. We denote a set of byte values and a set of positive byte
values as B = {0, ...,255} and B+ = {1, ...,255}. The behavior depends on sensor
data represented by a set H of n sensor variables H = {h1, ...,hn}. The sensor
data may originate from real or virtual sensors (the latter being any internal
variables of the robot). Each variable hi can be set to any byte value. The
seven main infra-red sensors of the robot are stored as h1, ...,h7, starting with
the two sensors facing to the front and then incrementing clockwise. We did
not use any other sensors for the experiments.

We assume a set I = {I1, ..., Im} ⊆ B+ of m instructions, encoded as positive
byte values. In general, instructions may be interpreted as arbitrary pro-
grams, which are capable to run on a robot; however, up to now only the
following simple instructions have been used: (1) Idle (i. e., ”keep executing
the last instruction”), (2) Stop, (3) Move forward, (4) Turn left, (5) Turn right.

We assume a function rand, which returns a random element out of an
arbitrary finite set, based on uniform distribution.

Moore automaton for robot behavior. A finite Moore automaton for robot
behavior (MARB) is a Moore Automaton A = (Q,Σ,Ω,δ,λ,q0), where:

Q is the set of states (q0 being the initial state).
The input alphabet Σ = Bn consists of all possible combinations of sensor

values.
The output alphabetΩ = I×B+ consists of the instructions with an addi-

tional parameter.
The transition function δ is defined for any state and each combination

of sensor values in Σ by specifying for each state q a list ((c1,q1), (c2,q2), ...)
of conditions and associated following states; it is interpreted like a case-
statement, i. e., the first condition evaluating to true under the current input
determines the next state. The conditions are conjunctive and disjunctive
combinations of f alse, true, or relational expressions of the type a rel b, where
a, b ∈H∪B+, rel ∈ {<,>,≤,≥,=,�,≈,�}. ≈ is true (� is false) whenever the two
operands differ by at most a constant (which is set to 5 in our experiments).
If none of the conditions evaluates to true there is a default transition to the
initial state (see Fig. 1).

Fig. 1 Example of implicit transitions to the initial state if no condition is true.

87

Lukas König and Hartmut Schmeck

The output functionλassigns to each state an instruction with a parameter,
e. g., (Turn left, 45), which lets the robot turn left by 45 degrees. The parameter
can be any positive byte value.

Mutation. The mutation operator is defined as a mapping in the genotypic
search space: M : Γ→ Γ (i. e. it maps a MARB A into a MARB M(A)). Let
k ∈ {0, ...,255} be a constant (we set k = 5 in all experiments). A mutation
randomly selects one of the following atomic transformations:

1. Toggle ”inactive” transitions (syntactic, i. e., no change of behavior): Re-
move a random transition, associated with the condition f alse or add a
random transition, associated with the condition f alse.

2. Remove an ”inactive” state (syntactic): Remove a state q without incom-
ing transitions or with all outgoing transitions being associated with the
condition f alse and the state being associated with the instruction IDLE.

3. Add a new state q (syntactic): q has no incoming transitions and no outgo-
ing transitions, random instruction and a random parameter ≤ k.

4. Change a condition: Let a,b ∈ B+∪H, c a condition. Any part of a condition
that matches the following patterns can be mutated (the notation x↔ x′
means that x may be replaced by x′ and vice versa.):

a. (semantic, i. e., potential change of behavior)

f alse ↔ a = b ↔ a ≈ b ↔ a ≤ b ↔ a < b
a ≥ b ↔ a > b ↔ a � b ↔ a � b ↔ true

b. One of the following (syntactic):

(c AND true)
(c OR true)

(c AND f alse)
(c OR f alse)

↔
→
→
↔

c
true
f alse

c

↔
←
←
↔

(true AND c)
(true OR c)
(f alse AND c)
(f alse OR c)

′
Replace i as follows:

i →
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i′, if 1 ≤ i′ ≤ 255
1, if i′ < 1
255, if i′ > 255

.

d. Change a sensor variable h within a condition (semantic): Replace
h with rand(H).

5. Change a state q (semantic): Let (I,P) be the output of q.
Replace (I,P) with (J, |P+ c|+1), where

c = rand({−k, ...,k}), J =

⎧
⎪⎪⎨
⎪⎪⎩

I, if P+ c > 1
rand(I) otherwise

.

Mutation was performed once within a time interval S. This interval was
studied in the experiments (see Sec. 3).

88

c. Change a number i within a condition (semantic): Let i = i+rand({−k, ...,k}),

Evolving Collision Avoidance on Autonomous Robots

Obviously, an appropriate sequence of mutations can transform any
MARB A into any other MARB A′ by changing its topology, conditions,
and the output function (i. e. the mutation operator is complete). In order to
make the mutations ”smooth” in the sense that a single mutation causes only
a ”small” change in the phenotypic search space, the focus is on keeping the
semantic mutations (i. e., mutations that potentially change the behavior)
few and small.

unit with information about the whole population, it is not possible to im-
plement a global selection operator. Instead, similar to the diffusion model
of evolutionary algorithms (cf. [7]) we use local selection: A robot produces
a child genome together with its closest neighbor. As in [5], a very simplified
recombination operator is used which assigns to both robots the parental
genome having the better fitness. Note, however, that this could easily be re-
placed with a more standard stochastic crossover operator combining parts
of both parental genomes into a child genome. Future work will feature such
a crossover operator.

On real robots, reproduction is performed each time two robots meet,
i. e., come closer to each other than some threshold. In simulation, we im-
plemented a similar solution which, however, is easier to analyze: Using a
constant time interval T, each robot reproduces with the robot which, after
T time units, is the spatially closest to itself. However, this does not mean
that all robots recombine simultaneously; for each robot a separate timer
is running which, due to possibly delayed requests, drifts apart during the
experiment. The parameter T was studied in the experiments (see Sec. 3).

Fitness function. As the fitness of a MARB has to be evaluated locally, it
has to be based on the observed sequence of sensor data which is influenced
by the generated behavior of the robot. Therefore, every U time units, the
fitness value is updated by a ”fitness snapshot” (see below).

Since mutations modify the behavior, the fitness value has to be adjusted.
This is done by using ”evaporation”, i. e., every V time units, the fitness
value of the robot is divided by 2. U and V are parameters that are studied in
Sec. 3. Furthermore, undesirable events (like collisions) should modify the
fitness appropriately.

For Collision Avoidance, we used a fitness measure, which states that mov-
ing around is good, but being near an obstacle is bad; colliding with an
obstacle is even worse. The fitness assignment is shown in Alg. 1. It holds
that NOT MOVING is 0, if the robot’s current instruction is ”Move”, 1 oth-
erwise; OBST NEAR is 1, if a close obstacle is sensed (i. e., ∃ h ∈H : h > 100),
0 otherwise. Initially, the fitness value of every robot is set to 0.

89

Reproduction /Selection. Since in the onboard concept there is no central

Lukas König and Hartmut Schmeck

if *U expired* then // Add snapshot to fitness.

fitness += (1 - NOT_MOVING - OBST_NEAR);

end if

if *Collision* then fitness -= 3; end if

if *V expired* then fitness /= 2; end if

Alg. 1: Fitness assignment and update.

3 Experiments

When doing evolutionary computation, it is usually required to adjust a set
of parameters, before good results can be achieved. We made experiments
to adjust the four parameters mutation interval S, reproduction interval T,
fitness snapshot interval U and fitness evaporation interval V. However,
there are more parameters than these four, which have to be studied in
future experiments (e. g., number of robots, size of field, and more complex
parameters like the mutation and crossover operators).

Collision Avoidance as target behavior has been used, because it is a
simple and analyzable behavior. However, as it was not a priori clear if this
is even evolvable with a model based on finite Moore automata and how it
would work, we present also two of the resulting automata.

Since there was a large number of evolved robots (in total 21060 robots in
810 simulations), it was not possible to look at all results in detail. Instead,
we checked only those automata, which finally achieved a positive fitness
value. To justify this, we separately tested automata with fitness > 0 (A)
and those with fitness ≤ 0 (B), whether they had a reachable ”Move”-state
(since otherwise, they could not move and, therefore, especially did not
perform Collision Avoidance). It turned out that 91% of the automata in
(A) had a reachable ”Move”-state, but only 28% of those in (B) did. Also, the
observation of random samples convinced us that zero is a reasonable fitness
threshold to distinguish between ”good” and ”bad” Collision Avoidance
behavior.

Adjusting the parameters. As listed in Tab. 1, 34 = 81 different parameter
combinations have been used, setting each of the four parameters to three
constant values. Each of these experiments was repeated 10 times. The setting
was a rectangular field, 60× 80cm, where 26 robots were placed randomly
(based on uniform distribution in position and angle). Their initial automa-
ton was completely empty, i. e., had no states. Simulation was performed
for about 2000000 simulation steps (a robot would drive about 8 km in one
experiment if only repeating the Move-instruction).

Fig. 2 shows the number of ”successful” experiments, i. e., experiments
in which there existed robots with a positive fitness in the end, distributed
on the 81 different parameter combinations. On average, there were about

90

Evolving Collision Avoidance on Autonomous Robots

Table 1 Parameter values used in the experiments.

Mutation Int. S Reproduction Int. T Snapshot Int. U Evaporation Int. V
1. 5000 ms 1000 ms 250 ms 10000 ms
2. 10000 ms 2000 ms 500 ms 20000 ms
3. 20000 ms 10000 ms 1000 ms 30000 ms

7 robots with a positive fitness in the final populations of successful experi-
ments (see Sec. 4 for a discussion on selective pressure).

As Tab. 2 shows, some of the results indicate a tendency, in which direction
parameters should be shifted.

Table 2 Distribution of successful experiments for each parameter separately.

Mutation Int. S Reproduction Int. T Snapshot Int. U Evaporation Int. V
1. 5000 ms: 18% 1000 ms: 37% 250 ms: 37% 10000 ms: 31%
2. 10000 ms: 29% 2000 ms: 29% 500 ms: 36% 20000 ms: 30%
3. 20000 ms: 53% 10000 ms: 34% 1000 ms: 27% 30000 ms: 38%

Fig. 2 Distribution of successful experiments (i. e., number of experiments out of 10 repe-
titions, where at least one robot had a positive fitness – for the 81 parameter combinations).

91

Fit. Evap. Int. 10000 Fit. Evap. Int. 20000 Fit. Evap. Int. 30000

Fi
t.

Sn
ap

.I
nt

.2
50

Fi
t.

Sn
ap

.I
nt

.5
00

Fi
t.

Sn
ap

.I
nt

.1
00

0

Lukas König and Hartmut Schmeck

The number of successful experiments increases with a larger mutation
interval S. In particular, a mutation interval of 5000ms almost never yielded
successful experiments (18%). So, looking at all parameter combinations, it
seems to be reasonable to increase the mutation interval even more.

For the reproduction interval T, no clear statements can be derived. Ap-
parently, the values between 1000ms and 10000ms have to be studied more
precisely.

For the fitness snapshot interval U, it seems as if the value should be de-
creased. However, the differences are smaller than at parameter S.

For the fitness evaporation interval V, higher values seem to be better.
However, due to dependencies between the parameters, it may not be

possible to find the perfect parameter combination by only optimizing each
parameter separately. Rather than doing that, we will continue to perform
experiments with a large set of parameter combinations to learn more about
these dependencies. We will use these results, however, to draw conclusions
about the directions, in which the search should be extended.

The evolution of Collision Avoidance. In our experiments, 545 robots (2.6%)
had a positive final fitness. Some of these achieved the expected Collision
Avoidance behavior, i. e., moving (arbitrarily) until an obstacle appears, then
turning until the way is clear, then moving again; some did some other forms
like driving in circles or ellipses. However, it is often hard to characterize a
behavior accurately, since it could depend on circumstances, which are hard
to understand; e. g., there were robots which avoided obstacles only when
a specific constellation of sensor values from the sensors in the back was
received. Therefore, we characterize a robot’s behavior only by its fitness
value; in future the fitness function should be refined to avoid unwanted
behaviors.

Fig. 3 Two examples of evolved automata – performing the expected Collision Avoidance
behavior (left, fitness: 730); driving a circle (right, fitness: 132); unreachable states set gray.

Fig. 3 shows two automata that evolved during the experiments. The left
one lets the robot essentially drive straight forward, except when sensing an
obstacle: then it turns left. The right one is driving a circle – without sensing

92

Evolving Collision Avoidance on Autonomous Robots

obstacles at all. However, due to the implementation of crash simulation,
it turns out that a circle-driving robot finds, after a few initial collisions,
enough space to drive with nearly no colliding and, therefore, is successful
in the sense of the fitness function.

4 Discussion

Conclusion. The results presented in this paper show that the onboard ap-
proach of online evolution of robot behavior based on a Moore Automaton
control works in principle. A set of four parameters has been selected quite
arbitrarily and set to some almost arbitrary values to study their influence
on the quality of the resulting behavior with respect to the fitness function.
Even within this random selection of the parameter search space, a parameter
combination has been found, which in 5 out of 10 samples yielded successful
experiments (and others did so in 3 or 4 out of 10 trials). It can be expected
that even better parameters can be found by extending the search in the di-
rections indicated by the results of the experiments and by modifying other
parameters, which have not been considered in this paper.

However, the experiments also uncovered some problems, which have
to be considered in future work. The process of reproduction, which is also
the mechanism of selection, is based on the assumption that the robots are
moving around at least now and then. If too many are standing idle, the
rule of producing offspring always with the closest neighbor determines
an incestuous exchange of genomes, always with the same partner. Since
we argued that most of the robots had a negative fitness in the end and
that of their automata only about 28% even had a reachable Move-state,
we can expect that this assumption was not fulfilled sufficiently in many
populations. Since a similar problem arose in experiments with real robots,
the movement of robots during evolution has to be studied more carefully
and probably a new mechanism of reproduction has to be developed. Maybe
using a flexile mutation interval (e. g., mutating robots with lower fitness
more often), rather than a constant one as we did so far, could also help
avoiding this. A second problem was the fitness function, which induced
unexpected solutions like driving circles without sensing obstacles. Though
these solutions were successful in the sense of the fitness function, it was not
the intended behavior. Obviously, the design of a fitness function for a target
behavior has to be studied in correlation with the expected and the actual
outcome.

Another issue is the measure of diversity (as defined in [8]) in the popula-
tion during the experiments, which could give a more detailed insight into
the evolutionary process. Besides inherent problems of the diversity mea-
sure, in this case, it is not even clear, how to measure the difference between
two single individuals. As proposed in [9], this difference could be measured

93

Lukas König and Hartmut Schmeck

on the phenotypic level through the reaction of individuals to stimuli (i. e.,
some kind of fitness function, again). However, the fitness function is de-
layed and dependent on the environment, so a more precise measure on the
genotypic level should be found. For two automata A and A′ such a measure
could, e. g., be based on the number of input sequences (i. e., sequences of
sensor combinations), where the corresponding output sequences produced
by A and A′ differ.

So far, we considered fitness values and genomes at the end of exper-
iments, only. However, fitness, genome, and movement of each robot are
recorded during the experiments. A careful analysis of this data should allow
to gain more information about selective pressure, the benefits of a flexible
mutation interval, the problem with incestuous exchange of genomes and it
could help to get a better idea of an appropriate evolving time.

Outlook to future work. More experiments with a larger variety of parame-
ter combinations have to be performed and the statistical significance of the
results has to be checked. Especially studying the mutation interval seems to
be promising for achieving better results. A recombination operator which
generates offspring as a mixture of the genomes of both parents has already
been developed, but still has to be implemented and tested. Also, we are
planning to make experiments with a flexible mutation interval. A measure
for diversity on the genotypic level is being developed. The development of
the population during evolutionary runs is going to be studied in detail.

References

1. Bonabeau, E.; Theraulaz, G.; Dorigo, M.: Swarm Intelligence. From Natural
to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity,
Oxford University Press, 1999

2. Kube, C. R.; Zhang, H.: Collective Robotics: From Social Insects to Robots.
Adaptive Behavior, 2, 2, 189-218, 1993

3. Goss, S.; Aron, S.; Deneubourg, J. L.; Pasteels, J. M.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften, 76, 579-581, 1989

4. Branke, J.; Schmeck, H.: Evolutionary design of emergent behavior. In ”Or-
ganic Computing”, Series: Understanding Complex Systems. Wrtz, Rolf P. (Ed.),
Springer Verlag, 123-140, 2008

5. König, L.; Jebens, K.; Kernbach, S.; Levi P.: Stability of on-line and on-board
evolving of adaptive collective behavior. Euros, Prague (accepted), 2008

6. Hopcroft, J. E.; Ullman, J. D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979

7. Schmeck, H.; Branke, J.; Kohlmorgen, U.: Parallel implementations of evolution-
ary algorithms. In: Solutions to Parallel and Distributed Computing Problems,
Zomaya, A.; Ercal, F.; Olariu, S. (Ed.). John Wiley, New York, Wiley Series on
Parallel an Distributed Computing, 47-66, 2001

8. Nehring, K.; Puppe, C.: A Theory of Diversity, Econometrica, 70, 1155-1198, 2002
9. Curran, D.; O’Riordan, C.: Increasing population diversity through cultural

learning, Adaptive Behavior, 14, 4, 2006

94

obotic etworks∗

Friedhelm Meyer auf der Heide and Barbara Schneider

Abstract Consider a group of m stations with fixed positions in the plane and a
group of n mobile robots, called relays, aiming at building a communication net-
work between the stations consisting of as few relays as possible. We present two
strategies for dimensionless, identical (anonymous), oblivious and disoriented re-
lays with limited viewing radius for constructing such a network. These strategies
resemble natural strategies of swarms for maintaining formations. A relay does not
communicate with others, its decision - whether to remove itself from the system,
or where to move - consists only of the relative positions of its neighbors within its
viewing radius. We provide a theoretical analysis of worst-case scenarios and upper
and lower bounds for the number of relays used by the strategies. In addition, we
show some preliminary experimental results.

1 Introduction

In our research we investigate the construction of a communication network con-
necting stations in a planar terrain without obstacles. Mobile relays are used to route
messages between the stations. Both stations and relays have a restricted viewing

Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute and Computer Science Department, University of Paderborn e-mail:
fmadh@upb.de

Barbara Schneider
Computer Science Department, University of Paderborn e-mail: barbaras@upb.de

∗ Partially supported by the European project ”Foundations of adaptive networked societies of
tiny artifacts (FRONTS)” within the 7th Framework programme, and the DFG-project ”Smart
Teams” within the SPP 1183 ”Organic Computing”

Please use the following format when citing this chapter:
Heide, F.M.a.d. and Schneider, B., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-
Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 95–104.

C
R N

SLocal Strategies for onnecting tations by
Small

ad-hoc networks.
Keywords: Mobile robots; self-organization; distributed computing; cooperation;

Friedhelm Meyer auf der Heide and Barbara Schneider

radius and thus are connected via their so-called unit disk graph. They are able to
sense the positions of all nodes within this distance. Starting with a large group of
relays with positions somewhere in the plane and a group of stations with fixed po-
sitions, our goal is to develop local strategies for the movement and removal of the
relays that globally result in a network of relays connecting the stations using as
few relays as possible. We assume that the initial unit disk graph of the stations and
relays is connected and our strategies must keep it connected. A globally optimal
solution would place the relays on the edges of a Minimum Steiner Tree connecting
the stations.

In Section 2 we present two local, distributed strategies for the movement and
removal of the relays. Both versions are very intuitive and do not use any commu-
nication, the relays perform their movements using only the sensed positions of the
relays and stations within the communication distance. This approach is defined in
[1] and called “Interaction via sensing”. In Section 3 and 4 we analyze and compare
the performance of the strategies concerning the number of relays used. The theo-
retical results provide a worst-case analysis, the experimental results are taken from
a simulation and we present sample outcomes that show promising results.

1.1 Related work

Generally, our work belongs to the field of distributed algorithms for robot swarms,
where groups of small, cheap robots are used to perform a variety of tasks. Some of
these tasks are the formation of geometric patterns, gathering at and convergence to
a single point, searching and partitioning the group of robots. A strategy for gather-
ing which is closely related to ours is analyzed in [2]. The setting here also consists
of robots which move synchronously, are oblivious and anonymous and have a lim-
ited viewing radius. Also, like in our strategies, the calculation of the next position
of a robot is based on the center of the smallest enclosing circle around its neighbors.
The main difference to ours is the goal of the strategy: there are no fixed stations
and the robots gather in one point. Moreover, no robots are deleted and the avoid-
ance of connection loss is different. In [2], the robots are restricted to a movement
distance of at most 1 which must be calculated each round by each robot based on
its neighborhood.

Another related scenario was presented in [3], where the explorer and the base
station in the static setting correspond to our stations. In addition to only using
two stations, a communication chain already exists such that every relay knows its
predecessor and successor. Also in that scenario, removal of relays is not considered.
The only strategy with removals is presented in [4] . It converges very fast, but also
only holds for a chain of relays connecting two stations. In addition, the relays need
a sense of direction, the chain has to be consistently directed from one station to the
other.

96

1.2 The model

In the following, we will refer to both relays and stations together as nodes. Using a
communication distance of 1, the unit disk graph of the stations and relays is a graph
where vertices correspond to stations or relays and edges exist between two vertices
if and only if the two nodes are within communication distance of each other. As
stated in Section 1, we assume that the unit disk graph is connected at the beginning,
and our goal is to transform the initial unit disk graph into one which still connects
all stations and uses as few relays as possible. Note that an optimal selection would
place the relays on the edges of a Minimum Steiner Tree connecting the stations, so
that neighboring nodes have distance 1. It is assumed that the measurement of the
position of neighbors is exact.

To simplify the analysis, we use a synchronous time model with discrete time
steps. In each step, nodes are able to sense their environment within the communi-
cation distance of 1, to compute their new positions and to move toward this new
position up to a distance of 1. This model is called “LCM-Model” (Look-Compute-
Move Model) in [5]. We furthermore denote the position of robot r at the beginning
of time step t by pt

r and the set of neighbors of robot r at the beginning of time step
t, i.e. all nodes within communication distance 1, by Nt(r).

We assume that a relay i can be deleted from the system if it recognizes that it
is not needed. The exact notions of “not needed” are part of the definition of our
strategies. (A deleted relay may be assumed to return to some base camp, in order
to be used for another task.)

For our analysis of the number of relays finally needed for the communication
network, we need the technical assumption that the viewing radius is smaller than 1,
i.e. we assume that the disks defining the unit disk graph are open sets. In this case,
the initial unit disk graph has the property that connected nodes are in distance of at
most 1−δ , for some δ > 0. We refer to δ as the slackness of the initial configuration.
In case we allow closed disks, we say that there is no slackness.

2 The strategies

The following GO-TO-THE-CENTER strategy is executed sequentially, i.e. every
time step one relay performs the strategy. The order in which the relays act is given
from the beginning and does not change. The time from the beginning of a move
of a relay r to the beginning of its next move is called a run. (We note here that
our results also hold if we assume a parallel execution of the actions of relay, as
long as no relays which are neighbors move in parallel. We have implemented a
randomized such strategy.) If relay i performs the strategy in time step t, it first
observes the exact positions of all its neighbors. It then computes its new position
as the center of the smallest enclosing circle around all positions of its neighbors
within its viewing radius. This center is equivalent to the point that minimizes the

97Local Strategies for Connecting Stations by Small Robotic Networks

Friedhelm Meyer auf der Heide and Barbara Schneider

maximum distance to the nodes in Nt(i). If there already is a node j at this position,
relay i deletes itself.

The EXT-GO-TO-THE-CENTER strategy is an extension of the GO-TO-THE-
CENTER strategy with an additional deletion rule. Here, before a relay i moves, it
checks if the subgraph of the unit disk graph induced by Nt(i) is connected. If this
is true, i deletes itself.

The following lemma shows that the unit disk graph stays connected in both
strategies.

Lemma 1. For both strategies, the following holds: If the unit disk graph is con-
nected before time step t, it is also connected at the end of time step t.

Proof. Let relay i and j be neighbors at the beginning of time step t. At most one of
the two relays can change its position in time step t. If none of them moves, they are
obviously neighbors at the end of time step t. Let i therefore be the relay performing
one of the two strategies. The point computed by i minimizes the maximum distance
to its neighbors, therefore the maximum distance between i and its neighbors cannot
increase:

dt+1(i, j) ≤ max
k∈Nt (i)

{dt(i,k)} ≤ 1

If i is not deleted, i and j therefore remain within communication distance and the
unit disk graph remains connected. If i is deleted, there are two possibilities:
(1) There is another relay r at position pt+1

i with Nt+1(i) = Nt+1(r). i and r therefore
have the same neighbors in the unit disk graph at the beginning of time step t + 1
and all edges adjacent to i lie in a circle. If i is deleted, the unit disk graph remains
connected.
(2) Relay i recognizes that its neighborhood is still connected without i. Since the
deletion of i only affects its neighborhood, the whole graph remains connected. ��

3 Theoretical insights

This section deals with the worst-case analysis of our strategies. We first prove that,
after finite time, the unit disk graph does not change any more, and that the convex
hull of all nodes converges to the convex hull of the stations. Then we provide upper
and lower bounds for the number of relays for scenarios with two or more stations
for both strategies. In the following, we assume that the number of relays in the start
configuration is n and that there exist m stations. The center of a smallest enclosing
circle is defined by two or three points (f. ex. [6]) called basis, we also call the nodes
at these positions the basis of a relay r.

Theorem 1. The number of changes of the unit disk graph is bounded by O(n(n+m)).

Proof. As soon as two relays i and j are neighbors, they stay neighbors until i or j
is deleted. A change of the unit disk graph therefore is a result of the deletion of a
relay or of two relays becoming neighbors. As no relays are added to the system,

98

the maximum number of relays which can be deleted is n. Moreover, every relay
can only find n+m−2 new neighbors, resulting in a maximum number of changes
of the unit disk graph caused by new neighbors of n

2 (n + m−2) = 1
2 n2 + 1

2 nm−n.
The maximum number of changes of the unit disk graph in general is therefore
1
2 n2 + 1

2 nm. ��
Theorem 2. All relays will eventually be within ε-distance to CH∗, the convex hull
of the stations, for every ε > 0.

The proof follows a similar concept of a proof in [2], where it is shown that the
robots gather in one point.

Proof.
Let CH(t) denote the convex hull of all nodes after t steps. We split the proof in the
following two parts. They obviously imply the theorem.

(a) For every t ≥ t0, CH(t +1) ⊂CH(t).
(b) There exists no convex polygon CH s.th. CH∗ is a proper subset of CH and CH

is a subset of every CH(t).

Proof of (a):
Fix some time step t +1, in which some node i moves. This move transforms CH(t)
to CH(t +1). As i’s new position is contained in the convex hull of its neighbors, it
is also contained in CH(t), which implies (a).

Proof of (b):
Let CH be such a convex polygon. Furthermore let t0 be a time instant such that
for all t ≥ t0 all relays are within ε distance of CH for ε > 0 small enough and
such that the unit disk graph does not change any more within finite time. Let CH ′
be another convex polygon consisting of edges parallel to those of CH in distance
ε outwards from CH. CH must have a corner e which is not defined by a station,
since CH∗ is a proper subset of CH. We call the corresponding corner of CH ′ e′.
Then there exists a line l intersecting CH in distance c of e with equal angles to both
edges of CH that intersect in e, where c > 0 is sufficiently small (compare Figure
1). Let E be the isosceles triangle formed by l and the edges of CH ′ intersecting in
e′. For every t > t0, E must contain a set of relays RE which can change in every
time step, since otherwise the convex hull of all nodes would be a subset of CH
(contradiction to the assumption). As the unit disk graph of the stations and relays
is connected, at least one relay in RE lies within communication distance to a relay
r outside of E. W.l.o.g. let r be the relay with maximum distance to l which still has
a neighbor in E. By choosing ε and c appropriately, it can be guaranteed that the
distance d′ from r to l is large enough such that in the run directly after r’s move
all relays in RE within communication distance of r leave E. Let ri be the first relay
leaving E in this run. Then there must still be relays left in E after ri’s move and,
since these relays are ri’s neighbors, the new position of ri must be closer to l than
the position of r. With ε and c small enough, the whole triangle E now lies within
communication distance of ri. Moreover, the distance of ri to l is still large enough
so that the new positions of all neighbors of ri are outside of E. This means that in

99Local Strategies for Connecting Stations by Small Robotic Networks

Friedhelm Meyer auf der Heide and Barbara Schneider

the following run before ri’s next move all neighbors of ri leave E or cannot enter
it. Furthermore, every other relay entering E in this run would become neighbor of
ri contradicting the assumption. So, on ri’s next move, there are no nodes in E. This
is a contradiction to the assumption. ��

Figure 1 Proof of Theorem 2

In the following, we prove first upper and lower bounds on the number of relays
eventually left over by our strategies. The first bound shows worst case limitations
of our strategies.

Theorem 3. Consider four stations forming a square of edge length d. There are
configurations of Θ(d2) relays for both strategies so that no relay will ever be re-
moved. (Note that the minimum Steiner Tree has size Θ(d) in this case.)

The second bound is restricted to the scenario of two stations and shows the
asymptotic optimality in this scenario for initial configurations with positive slack-
ness.

Theorem 4. Let an initial configuration with two stations in distance d and some
positive slackness δ be given. The number of relays used by EXT-GO-TO-THE-
CENTER will eventually be at most 2d. (Note that this is optimal up to a factor of
2.)

Proof (of Theorem 3). If the relays form a grid of distance 0.9 inside the square of
stations, there exist edges in the unit disk graph between two adjacent points on the
grid (see Figure 2). This is why there exists no relay with a connected neighborhood.
Moreover, every relay is positioned in equal distance to all its neighbors in the center
of the smallest enclosing circle. Therefore no relay can move or be deleted. The
number of relays is then quadratic in d.

100

Figure 2 Illustration for the proof of Theorem 3

Proof (of Theorem 4). We first note, that the slackness of a configuration will not
decrease anymore after the last of the (finitely many, compare Theorem 1) changes
of the unit disk graph. Let the slackness after this last change be δ > 0. Now con-
sider a later time step so that, from now on, the relays will always stay within a
rectangle around the line connecting the stations with width ε > 0 small enough so
that ε(1−δ) < 1. Fix an arbitrary relay i. Because of the choice of ε , its neighbors
in direction to the first station form a connected subgraph of the unit disk graph, and
its neighbors in direction to the other station do so as well. Thus, as the unit disk
graph does not change anymore, the closest neighbors of i in both directions have
distance at least 1. This implies the bound 2d for the number of relays. ��

4 Experimental results

In this section we will present some preliminary experimental simulation results. In
our tests, the results were much better than the worst-case scenarios in Section 3.
We have chosen three sample start configurations and present the results for both
strategies.
In the first start configuration (Figure 3), the four stations form a square with side
length 2.5 and part of the relays are located around the stations in form of a square
with side length 5. The remaining of the 53 relays are situated arbitrarily inside or
close to the square of relays.
The second start configuration (Figure 5) consists of five stations and 70 relays with
the stations situated arbitrarily in the plane and a lot of relays in the convex hull of
the stations. The remaining relays are mainly positioned at the left and at the upper
right side of the convex hull of the stations and the longest distance between two
stations is 6.
The third start configuration (Figure 7) consists of five stations and 400 relays, all of
them positioned uniformly at random in a 10×10-Grid. Because of the big number
of relays, the probability for a connected unit disk graph or for connected compo-
nents which merge during the simulation is high.

These preliminary experiments suggest the following:

• The set of relays is thinned out considerably.

101Local Strategies for Connecting Stations by Small Robotic Networks

Friedhelm Meyer auf der Heide and Barbara Schneider

• The final formation of the relays does not reach the shape of a Minimum Steiner
Steiner Tree, but comes close.

• Typically, if the formation contains a part that resembles a cycle within the con-
vex hull of the stations, then this cycle cannot be broken by our local strategy.

• EXT-GO-TO-THE-CENTER converges substantially faster than GO-TO-THE-
CENTER.

Figure 4 shows the configurations after applying GO-TO-THE-CENTER or EXT-
GO-TO-THE-CENTER resp. to the first start configuration, Figure 6 depicts the re-
sults for the second and Figure 8 for the third start configuration. Additionally, the
figures show the minimal Steiner tree as the globally optimal solution.

Figure 3 Start configuration for scenario 1

(i) GO-TO-THE-CENTER (ii) EXT-GO-TO-THE-CENTER

Figure 4 End configurations for scenario 1

102

Figure 5 Start configuration scenario 2

(i) GO-TO-THE-CENTER (ii) EXT-GO-TO-THE-CENTER

Figure 6 End configurations for scenario 2

Figure 7 Start configuration scenario 3

103Local Strategies for Connecting Stations by Small Robotic Networks

Friedhelm Meyer auf der Heide and Barbara Schneider

(i) GO-TO-THE-CENTER (ii) EXT-GO-TO-THE-CENTER

Figure 8 End configurations for scenario 3

References

1. Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics: Antecedents and
directions,” in Autonomous robots, vol. 4, pp. 1–23, 1997.

2. H. Ando, I. Suzuki, and M. Yamashita, “Formation and agreement problems for synchronous
mobile robots with limited visibility,” in Proc. IEEE Int. Symp. Intelligent Control, pp. 453–460,
1995.

3. M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide, “Maintaining communication
between an explorer and a base station,” in Proc. of the 1st IFIP Int. Conf. on Biologically
Inspired Cooperative Computing (BICC), IFIP, pp. 137–146, Springer-Verlag Berlin, 2006.

4. J. Kutylowski and F. Meyer auf der Heide, “Optimal strategies for maintaining a chain of relays
between an explorer and a base camp.” To appear in Theoretical Computer Science, 2008.

5. R. Cohen and D. Peleg, “Robot convergence via center-of-gravity algorithms,” in Proc. of
the 11th Int. Colloq. on Structural Information and Communication Complexity (SIROCCO),
vol. 3104 of Lecture Notes in Computer Science, pp. 79–88, 2004.

6. S. Skyum, “A simple algorithm for computing the smallest enclosing circle,” vol. 37, no. 3,
pp. 121–125, 1991.

104

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

Abstract Imitation is not only a powerful means to drastically downsize the explo-
ration space when learning behavior. It also helps to align the learning efforts of
a robot group towards a common goal. However, one prerequisite in imitation, the
decision of which robot to imitate, is often factored out in current research.

In our work we address this question by providing a means to measure the simi-
larity between two robots. Based on this similarity a robot can choose which robot
to imitate. The affinity of two robots with respect to imitation is most reasonably
measured by calculating their behavioral difference, since the goal of imitation is
learning new behavior. This is accomplished by each robot individually construct-
ing an Affordance Network which is a Bayesian network upon its conditional af-
fordance probabilities in the environment. An affordance represents the interaction
possibilities an object provides to the robot. These Affordance Networks are then
compared with a new metric.

1 Introduction

Imitation is not only a powerful means to drastically downsize the exploration space
when learning new behavior [2, 12, 17]. It also helps to align the learn efforts of a
robot group towards a common goal. It becomes especially important if a robot is a
member of a group of robots who have to accomplish a common task or even several
different tasks. The awareness of this has led to the definition of the “big five” ques-
tions in imitation, “namely who, when, what, and how to imitate, in addition to the
question of what makes a successful imitation” [5]. As recent research has concen-
trated on the “what” and “how”, the “who” has so far been factored out in current
research – either by restricting the imitation process to a one-to-one demonstrator-
imitator relationship where the roles of both are clear, or by providing the robots
with fixed rules. However, the question of whom to actually imitate plays a role al-

Intelligent Mobile Systems, University of Paderborn / C-LAB, Germany, richert@c-lab.de

Please use the following format when citing this chapter:

Golombek, R., Richert, W., Kleinjohann, B. and Adelt, P., 2008, in IFIP International Federation for Information Processing,
Volume 268; Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck;
(Boston: Springer), pp. 105–114.

Measurement of Robot imilarity to Determine
the est Demonstrator for Imitation in a roup

S
B G

Heterogeneous Robotsof

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

ready in early childhood, as shown e.g. by the Psychologist Burnstein [3]: He found
out that children imitate more often peers that have similar sex, age or interests.

In our work we address this question by providing a means to measure the sim-
ilarity between two robots. The affinity of two robots with respect to imitation is
most reasonably measured by calculating their behavioral difference, since the goal
of imitation is learning new behavior. This is accomplished by each robot individ-
ually constructing an Affordance Network which is a Bayesian network upon its
conditional affordance probabilities in the environment. Encoded in such a network
is the information which capabilities are dependent on which other ones. If, e.g. a
robot knows it has the capability A and another robot is capable of A and B and
in addition has identified the dependency A → B, then it would be wise to imitate
that robot. Two robots can thus individually learn about each other’s Affordance
Networks and calculate the difference. When comparing each other the robots can
then determine from this difference the degree of behavioral similarity – the more
behaviorally similar two entities are the more reasonable it would be for them to
mutually imitate beneficial behavior. Depending on the metrics used to calculate the
difference an observing robot can decide whether it should a) copy the knowledge
of the other robot (if the demonstrator has the possibilities to share it), b) imitate the
robot using indirect observation, or c) ignore it.

Fig. 1 Simulation environment with two morphologically different robots: Choosing the right
robot to imitate helps to avoid useless imitation attempts

The psychologist Gibson observed that our perception of the world is dependent on
our interactions with it. For this he introduced the term affordance [9, 10] which is a

106

2 Related Works

property an object can have that describes the possible actions that can be performed
with it. This depends on the one hand on the object itself, its objective properties
like size, weight, surface friction, or shape, and on the other hand on the entity that
tries to manipulate that object. But even if the system has all the capabilities to
manipulate an object it does not help until it knows how to do that – a common
learning problem in developmental robotics [13]: If a system is able to find out
which actions make generally sense, it has filtered out the vast amount of useless
actions.

Robotics researchers have embraced that concept of affordances as it helps the
research to look through the eyes of a robot [7, 15, 16]. Affordances are even used
together with Bayesian Networks (BNs) in the field of imitation: Lopes et al. [14],
e.g., use BNs to learn object affordances. However, as they are interested in learn-
ing the individual affordances they assume the role of the demonstrator to be known.
Thus they use BNs to model the affordance. In contrast, we use them to model affor-
dance dependencies to infer behavioral differences. Cesa-Bianchi et al. [4] present
an algorithm that chooses the best expert from a set of predefined experts. In their
game-theoretic approach they require a static set of always accessible experts – a
condition hardly met in realistic robotic domains. As their algorithm is only relying
on the experts’ performances it does not help in heterogeneous real-world robotics
applications, where robots have different morphologies and capabilities. Balch de-
veloped a means to measure the overall diversity of a group of robots [1]. In his
approach the robots are assumed to be morphologically similar and that their learn-
ing algorithms already have converged to a stable behavior.

3 Algorithm

To compare robots based on their behavioural affinity and thus actively control the
imitation process one needs data which is related to the robot’s behavioural possi-
bilities. Upon the raw data we build a meaningful representation which we then use
to compare robots by an adequate metric.

First we need data about behavioural possibilities of a robot. This information relies
on the robot’s hardware and software. Thus the first idea could be to compare these
components. However, this approach is infeasible because the information can be
exchanged by communication only and a common communication interface cannot
be demanded for arbitrary robots. Furthermore, the robot’s hardware differs even if
it fulfills the same functionality, i.e. one robot could be differentially driven while
another one uses omniwheel for locomotion.

107Measurement of Robot Similarity for Imitation

3.1 Gathering Raw ataD

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

strators by observation. In this paper we assume the set of affordances to be pre-
defined and constant. However, this is no restriction to our algorithm as learning
affordances at run-time (e.g. via [14]) does not pose a problem to this approach. Let
S = {s1, ...,sn} be the set of all recognizable affordances and let L = {l1, ..., ln} de-
note all objects in the robot’s environment. We can then define O = S×L×B where
B = {True,False} as the set of all possible results of an affordance test. Further-
more, we define Ori ⊆ O as the set of results gathered by robot Ri. To simplify the
disscussion we define the following functions: bool(oir) = bir, affordance(oir) = sir,
and object(oir) = lir, whereas oir ∈ Oir.

3.2 Affordance Network

The gathered raw data is unstructured, noisy and incomplete. Furthermore, the set of
data samples grows rapidly during the robot’s environmental exploration. To struc-
ture the data and cope with uncertainty each affordance is interpreted as a random
variable Xi and the gathered data for this affordance as a sample set. We then can
define the finite set X = {X1,,Xn} of random affordance variables where each
variable may take on a value xi from the domain {True,False}. Upon Ori we define
O

′
ri = {(bool(or1), ...,bool(orn))| ∀ori,or j : i �= j and ob ject(ori) = ob ject(or j)} and

interpret these tuples as samples of the joint distribution of the random variables in
X . To get a compact representation of the joint distribution of the variables in X we
train a Bayesian Network with the set O

′
ri for each robot individually. As the data

in O
′
ri is directly coupled to the tested affordances a Bayesian Network trained with

this set will also encode behavioral information.

Definition 1. Let P be a joint probability distribution of the random variables X =
{X1,,Xn} in some set V , and G = (V,E) be a DAG. We call (G,P) a Bayesian
Network if (G,P) satisfies the Markov condition. By applying the chain rule of
probabilities and properties for conditional independencies, any joint distribution P
that satisfies the Markov condition can be decomposed into the product form:

P(X1,,Xn) =
n

∏
i=1

P(Xi| parents(Xi)).

The directed edges of the DAG describe causal relations between the random vari-
ables in X . Each node has an attribute which describes the conditional probabilistic
distribution of its random variable and the random variables of its parents.

If there is enough expert-knowledge to define the structure of a Bayesian Net-
work, only the parameters i.e. the conditional probabilities have to be learned from
data. In our case as we do not use any further domain knowledge we have to learn
both, the structure and the parameters from data. Therefore we apply the Structural

108

behavioural capabilities of a robot. Each robot can gather its own affordance data
As already pointed out, affordances are subjective and tightly coupled to the

during environmental exploration and can get the affordance data of potential demon-

EM Algorithm [8] to the affordance data. This is an iterative algorithm based on a
standard Expectation Maximization algorithm to optimize parameters, and a struc-
ture search to find the current best structure model.

A problem commonly found in structural-learning Bayesian networks is that real
causality cannot be derived from raw data [11]. However, this is not a problem here
as we do not make inference on the trained networks rather we use them to measure
the distance between robots by means of behavioral affinity.

3.3 Metric

After defining a meaningful and well structured representation of a robot we now
need to define a metric to measure robot affinity. As BNS are directed acyclic graphs
we can apply the Graph Edit Distance Metric (GED) [6] to measure structural dis-
tance between two graphs g1 and g2. To describe the GED metric we need the defi-
nition of a label representation as defined in [6]:

Definition 2. Let LE and LV denote sets of edge and node labels, respectively. A
graph g = (V,E,α,β) is a 4-Tuple where V is the finite set of vertices, E ⊆ V ×V
is the set of edges, α : V → LV is a function assigning labels to the nodes and
β : E → LE . The label representation of g, p(g), is given by p(g) = (L,C,λ):

• L = {α(x)|x ∈V},
• C = {(α(x),α(y))|(x,y) ∈ E}, and
• λ = C → LE with λ (α(x),α(y)) = β (x,y) for all (x,y) ∈ E.

Using the label representation we can then define the Graph Edit Distance met-
ric [6]:

Definition 3. Let g1, g2 be two graphs with label representations p(g1) and p(g2).
Furthermore, let C0 = {(i, j)|(i, j) ∈ C1 ∩C2 and λ1(i, j) = λ2(i, j)} and C′

0 =
{(i, j)|(i, j)∈C1∩C2 and λ1(i, j) �= λ2(i, j)}. Then the graph edit distance d(g1,g2)
of the two graphs is

dged(g1,g2) = |L1|+ |L2|−2|L1 ∩L2|+ |C1|+ |C2|−2|C0|+ |C′
0| (1)

As we are only interested if an edge between two nodes exists, we define β (x,y) = 1
∀(x,y) ∈ E, and thus omit |C′

0| from our distance metric for affordance networks.
As the nodes of the Affordance Networks also need a special treatment due to the
inherent conditional probability differences, this leads to the edge comparing part
of the final affordance network metric dane:

dane(g1,g2) = |C1|+ |C2|−2|C0| (2)

The nodes of the Affordance Network contain conditional probabilities which
may differ so that we have to measure distances between these probabilities. For
example, consider the node with the label “Reachable” in the networks g1 and g2

109Measurement of Robot Similarity for Imitation

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

(Fig. 2). In g1 it has no parent, thus it is is said to be unconditioned. The node
with the same label in g2 is conditioned by the outcome of node with the label
“Pushable”. We have to compare P(Reachable) = 0.2 from the node in g1 with
P(Reachable|Pushable = 1) = 0.0 and P(Reachable|Pushable = 0) = 0.8 from the
node in g2. To be able to measure the distance inside the nodes we use the definition

Pushable

P(Pushable) = 0.9

Grabable

Pushable

0

1

P(Grabable)

0.0

0.6

Reachable

Pushable

0

1

P(Reachable)

0.8

0.0

g1 g2

Pushable

P(Pushable) = 0.600

Reachable

P(Reachable) = 0.2

Grabable

Pushable

0

1

P(Grabable)

0.0

0.6

Fig. 2 Two Affordance Networks with different distributions

of independence and conditional independence.

Definition 4. Two events E and F are independent if one of the following holds:

• P(E|F) = P(E)∧P(E) �= 0,P(F) �= 0
• P(E) = 0∨P(F) = 0

Definition 5. Two events E and F are conditionally independent given an event G if
P(G) �= 0 and one of the following holds:

• P(E|F ∩G) = P(E|G)∧P(E|G) �= 0,P(F |G) �= 0
• P(E|G) = 0∨P(F |G) = 0

Using these definitions we can expand the probability of the node in g1: The proba-
bility for the “Reachable” affordance is therefore transformed from P(Reach.) = 0.2
to P(Reach.|Push.) = 0.2 and P(Reach.|¬Push.) = 0.2 if the events “Reachable”
and “Pushable” are independent. Since there is no edge in g1 between the nodes
with labels “Reachable” and “Pushable” the Markov condition guarantees their in-
dependence.

After extending the probability labels we can interpret the probabilities of node
v as a point point(v) in n-dimensional space, where n is the number of entries in
the nodes probability table. Then we can calculate the distance δ (e.g. Euclidean)
between two equally labeled nodes in the different Affordance Networks:

dann(g1,g2) = ∑
v1∈V1,v2∈V2

α(v1)=α(v2)

δ (point(v1), point(v2)) (3)

The final distance function for two Affordance networks dan is then the weighted
summation of dane(g1,g2) and dann(g1,g2), where the weights are domain depen-
dent and can be used to control the influence of the structure and the probability

110

distribution:

dan(g1,g2) = ce (|C1|+ |C2|−2|C0|)+ (4)

cn

⎛
⎜⎜⎝ ∑

v1∈V1,v2∈V2
α(v1)=α(v2)

δ (point(v1), point(v2))

⎞
⎟⎟⎠ (5)

4 Experimental Results

The presented approach will be demonstrated with two scenarios: In the first one
it is shown in detail how the approach leads to the determination of behavioral
difference. The second scenario demonstrates how its usage leads to a significant
improvement of the imitation process.

4.1 Scenario 1

In this artificial example there are three robots of which one is the imitator (Ri) that
has to choose between two demonstrators (Rd1) and (Rd2) to imitate. The properties
regarding the gripper and the drive motor are shown in Tab. 1. Fig. 1 shows the
two demonstrators to which the environmental objects have different affordances
because of their different morphologies: The yellow robot (Rd2) with the barbed
gripper, e.g., is able to pull objects and can not lift them, whereas the blue one (Rd2)
has a strong gripper but a weak drive, so that it is able to lift some objects, but can
not pull them.

Over the course of its lifetime the imitator has recorded the affordances of the
two other robots in the scenario and has built an Affordance Network as described
in Sec. 3.2 that is depicted in Fig. 3 (page 8). Let us now take a look on how the
presented behavioral metric works on those networks to measure the behavioral
similarity.

Table 1 Qualitative description of three robots. The imitator is more similar to demonstrator 1 in
terms of its gripper and motor capabilities. When imitating another robot in order to learn new
behavior it should imitate that robot instead of demonstrator 2.

robot capabilities
gripper motor

length strength style strength

demonstrator 1 long weak barbed strong
demonstrator 2 short strong normal weak
imitator normal weak barbed normal

111Measurement of Robot Similarity for Imitation

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

From the qualitative description it is intuitively clear in this simple example that
the imitator has more resemblance to demonstrator 1 and should imitate that robot
instead of demonstrator 2 (Rd2). Applying the distance metric dan to the data col-
lected with the three robots we get the results for various weights of the edge and
the node distance part as shown in Tab. 2. As can be seen the behavioral distance
between the imitator and the first demonstrator is smaller than the distance to the
second one.

Table 2 Behavioral similarity calculated using the distance metric dan.

ce cn dan(Ri,Rd1) dan(Ri,Rd2)

0.1 0.9 2.307 3.614
0.25 0.75 2.423 3.845
0.5 0.5 2.61 4.23
0.75 0.75 2.808 4.615
0.9 0.1 2.923 4.846

Pullable

Grabable

0

1

P(Pullable)

0.0

0.909090936184

Grabable

P(Grabable) = 0.733

Pushable

Grabable

0

1

P(Pushable)

0.25

0.909090936184

L iftable

P(L iftable) = 0.200

(a) demonstrator 1 (b) demonstrator 2

Pullable

P(Pullable) = 0.600

Grabable

Pullable

0

1

P(Grabable)

0.166666671634

1.0

Pushable

Grabable

0

1

P(Pushable)

0.20000000298

0.800000011921

L iftable

Pushable

0

1

P(L iftable)

0.0

0.333333343267

(c) imitator

Fig. 3 The final Affordance Networks from the viewpoint of the imitator. These are used by the
imitator to calculate the difference in order to determine that robot that has behaviorally the most
resemblance to the imitator

4.2 Scenario 2

This scenario was carried out in the PlayerStage/Gazebo simulation environment
(Fig. 1). A robot similar to the well-known Pioneer2DX had to choose between
three morphologically different demonstrators whom to imitate. All robots differed
in the size, strength and shape of their gripper and the strength of their drive unit.

112

The experiment was carried out as follows: The imitator started without any
knowledge and no Affordance Networks. Then it observed a random demonstra-
tor carrying out an action like pushing an object (Fig. 1) and recorded whether it
was successful. Afterwards it carried out all known tasks with all known objects
in the environment by itself, recorded the success and updated the Affordance Net-
works for them both. The number of failed behaviors dependent on the number of
imitations it has carried out is shown in Fig. 4. As can be seen the imitation process

Fig. 4 Increase of the imitation efficiency due to improved imitator selection

gets more efficient with more observations and thus more exact Affordance Net-
works compared to randomly choosing a demonstrator. The Affordance Networks
together with their metric significantly help to improve the overall imitation process.

5 Conclusion

We introduced Affordance Networks, which are Bayesian Networks based on the
affordance dependencies of robots and developed a distance metric which calculates
the behavioral diversity between two robots based on those Affordance Networks.
Once the affordances are observed a robot willing to imitate is able to determine that
robot in a heterogeneous robot group that is the most similar to the imitator. This
leads to a higher success probability in the imitation process as imitation of robots
that are e.g. morphologically different to the imitating robot is avoided.

113Measurement of Robot Similarity for Imitation

Raphael Golombek, Willi Richert, Bernd Kleinjohann, and Philipp Adelt

Although this example is carried out only in realistic simulation environment
it should be clear that it would result in a similar outcome in a real world if the
data can be collected in sufficient quantity, because the presented approach is able
to cope with missing and noisy data. To our knowledge this is the first solution to
answer the question whom to imitate in a group of robots. It is not restricted to the
robotics domain, but can be applied to all domains where behavior can be observed
and imitated.

References

1. Balch, T. Behavioral Diversity in Learning Robot Teams. PhD thesis, Georgia Institute of
Technology, Dec. 1998.

2. A. Billard and M. J. Mataric. Learning human arm movements by imitation: : Evaluation of
a biologically inspired connectionist architecture. Robotics and Autonomous Systems, 37(2-
3):145–160, 2001.

3. E. Burnstein, E. Stotland, and A. Zander. Similarity to a model and self-evaluation. Journal
of Abnormal and Social Psychology, 62:257–264, 1961.

4. N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth.
How to use expert advice. J. ACM, 44(3):427–485, 1997.

5. K. Dautenhahn and C. Nehaniv. An agent-based per- spective on imitation, 2002.
6. P. J. D. et. al. On graphs with unique node labels. In Graph Based Representations in Pattern

Recognition, volume 2726, pages 409–437, Heidelberg, DE, 2003. Springer Berlin.
7. P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning about objects through

action-initial steps towards artificial cognition. Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, 3, 2003.

8. N. Friedman. Learning belief networks in the presence of missing values and hidden vari-
ables. In Proc. 14th International Conference on Machine Learning, pages 125–133. Morgan
Kaufmann, 1997.

9. J. Gibson. The theory of affordances. In R.Shaw and J.Brandsford, editors, Perceiving, Act-
ing, and Knowing: Toward and Ecological Psychology, pages 62–82. Erlbaum, Hillsdale, NJ,
1977.

10. J. J. Gibson. The Senses Considered as Perceptual Systems. Houghton-Mifflin Company,
Boston, 1966.

11. D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combina-
tion of knowledge and statistical data. Mach. Learn., 20(3):197–243, 1995.

12. A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical sys-
tems in humanoid robots, 2002.

13. M. Kopicki, A. Sloman, J. Wyatt, and R. Dearden. Learning object affordances by imitation.
Technical report, The University of Birmingham, 2005.

14. M. Lopes, F. Melo, and L. Montesano. Affordance-based imitation learning in robots. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.

15. E. Oztop, N. Bradley, and M. Arbib. Infant grasp learning: a computational model. Experi-
mental Brain Research, 158(4):480–503, 2004.

16. A. Slocum, D. Downey, and R. Beer. Further Experiments in the Evolution of Minimally
Cognitive Behavior: From Perceiving Affordances to Selective Attention. From Animals to
Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Be-
havior, 2000.

17. A. Ude, T. Shibata, and C. G. Atkeson. Real-time visual system for interaction with a hu-
manoid robot. Robotics and Autonomous Systems, 37(2-3):115–125, 2001.

114

Distributed Fault-Tolerant Robot Control
Architecture Based on Organic Computing
Principles

Adam El Sayed Auf, Marek Litza, Erik Maehle

University of Lübeck, Institute of Computer Engineering, Ratzeburger Alle 160, 23538 Lübeck,
Germany
{elsayedauf, litza, maehle}@iti.uni-luebeck.de

Abstract Walking animals like insects show a great repertoire of reactions and
behaviours in interaction with their environment. Moreover, they are very adaptive
to changes in their environment and to changes of their own body like injuries.
Even after the loss of sensors like antennas or actuators like legs, insects show an
amazing fault tolerance without any hint of great computational power or complex
internal fault models. Our most complex robots in contrast lack the insect abilities
although computational power is getting better and better. Understanding biologi-
cal concepts and learning from nature could improve our approaches and help us

introduces a control architectural approach based on organic computing principles
using concepts of decentralization and self-organization, which is demonstrated
and tested on a six-legged robotic platform. Beside explaining the organic robot
control architecture, this study presents a leg coordination architecture extension
to improve the robustness and dependability towards structural body modifications
like leg amputations and compares experimental results with previous studies.

Introduction

Legged locomotion encounters challenges like controlling the leg’s different
phases with unequal responsibilities, coordinating legs to achieve an effective
walking pattern as well as adapting the achieved gait to the environmental circum-
stances and a given task. In contrast to a wheeled rotary motion, a leg passes
through a stance phase, carrying part of the systems weight and stemming it to a
given direction, and a swing phase, lifting up the leg and moving it in the opposite
direction to put it down again. The precondition for a stance phase is the leg’s
ground contact and must be obtained at the end of each swing phase. All legs of a

Please use the following format when citing this chapter:

Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 115–124.

to make our systems more "life-like" and therefore more fault tolerant. This article

Auf, A.E.S., Litza, M. and Maehle, E., 2008, in IFIP International Federation for Information Processing, Volume 268;

Sayed Auf, M. Litza, M. Maehle

walking system accomplishing alternating stance and swing phases must be coor-
dinated to a stable walking pattern. In the animal kingdom, these tasks are solved
by each single walking creature. Even insects that are alleged to have low “com-
putational power” cope with these tasks. Animals use smooth transitions of their
gaits instead of hard switches. Horses do not switch between standing on a feedlot,
trotting and galloping but use a smooth changeover between different gaits de-
pending on the animal’s velocity, equally insects do. That leads to the assumption
that controlling walking patterns does not base on a set of predefined gaits, but the
use of general rules providing the ability of adaptation. Taking into account the
mentioned challenges are passed by each walking animal, the question arose if a
central or decentral control is underlying legged locomotion. The present work in-
troduces an organic computing approach facing the challenges with decentralised
and self-organizing mechanisms by the use of a six-legged walker.

Figure 1: The Robot Platform OSCAR.

The Robot Platform

OSCAR (Organic Self Configuring and Adapting Robot) is a six-legged walk-
ing machine with 18 degrees of freedom (DOF). Its servo motors as well as its
skeleton parts are commercially available. Set together, the parts result in a sym-
metric robot with a round body and a span length of 74.5 cm over completely
stretched out legs (Fig. 1). Each leg has three degrees of freedom and is equipped
with a binary contact sensor. Its head consists of a wireless camera, an ultra sonic
sensor and a heat sensor, altogether movable with one joint. While the binary con-

116

color picture to a personal computer, the ultrasonic sensor measures the distance
tact sensor signals if the leg is touching the ground or not, the camera sends a

between OSCAR and an obstacle and the heat sensors detects heat sources like

humans. The onboard control hardware, also commercially available, consists of a
SD21 Servo Driver Module and a JControl/SmartDisplay, programmable in Java.
All parts are connected by an I2C-Bus.

Figure 2: Example for the Organic Robot Control Architecture ORCA for one leg.

The Software Architecture

The Organic Robot Control Architecture - ORCA – was designed to be modu-
lar and hierarchically organized in order to be easily manageable and to fit to the
control architecture of a robot which is also assumed to be modular, hierarchically
organized and behaviour-based [1,2]. An ORCA-based system is built using Basic
Control Units (BCUs) to achieve the desired functionality. Each BCU encapsu-
lates a specific functionality. It can for example implement generic signal filtering
modules or PID-controllers, but may also encapsulate sensor or actor hardware of
the robot at lower system levels. BCUs interact by interchanging data (signals).
The connections between BCUs can also be used to trigger activity in the receiv-
ing BCU when new data are sent. Organic Control Units (OCUs) supplement
these BCUs. An OCU uses the same unified interface that BCUs use to inter-
change data and trigger activities. In contrast to BCUs, OCUs do not realize a pre-
defined custom function for the robot, but they monitor the signals generated by

117Organic Computing Fault-Tolerant Robot Control Architecture

Sayed Auf, M. Litza, M. Maehle

one or more BCUs. When these monitored signals show a substantial change, the
OCU can react by changing parameters of the BCUs. By defining “normal” or
“good” ranges for some of the signals a BCU generates, an OCU can decide when
to start changing parameters to bring the system back to a normal or “healthy”
state (reasoner). Further, the BCUs shall be able to learn in order to improve their
reactions in similar situations in the future by making use of a memory for a short-
time history. So the BCUs manage single basic functions in close collaboration
with other BCUs, which leads to an emergent collective functionality, while the
OCUs ensure the system’s robustness and dependability by monitoring single or
several BCUs and reacting to stronger changes or failures. As well as BCUs,
OCUs are modular and locally distributed with the ability to communicate with
each other.

Self-Organizing Walking Patterns

Based on the ORCA approach and inspired by biological experiments and con-
trollers like the Walknet [4] a decentralized controller is used to achieve organic
walking patterns. Each of the six legs consists of three joints and has its own con-
troller implemented as a separate BCU for trajectory generation (Fig.2). These
BCUs generate position commands for the BCUs of the three leg joints (alpha,
beta, and gamma-controller) which then send PWM (Pulse Width Modulation)
signals to the respective servos.

Controlling one leg means managing an alternation composed of swing and
stance phase. In the swing phase the leg is lifted up from the ground, moved to the
front, and put down on the ground again. The ground contact signal triggers the
stance phase when the leg moves backwards in respect to the body. In this phase it
carries a part of the body's weight and pushes it to the front. To obtain an alterna-
tion between swing and stance phases, the trajectory controller uses the informa-
tion of the ground contact signal and two extreme positions: the posterior extreme
position (PEP) and the anterior extreme position (AEP). If a leg has reached the
PEP in its stance phase, it switches into swing phase. So the leg will lift up and
move along a fixed trajectory towards the AEP. After reaching the AEP and re-
ceiving the ground contact signal, the leg switches again into the stance phase and
moves back towards the PEP. This principle leads to a swing-stance alternation.
The frequency of this alternation can be changed by increasing or decreasing the
duration of the stance phase only.

Each of the six trajectory BCUs uses the same flexible coordination rule to har-
monize its movements with the neighbouring leg controllers' swing phases. The
ground contact signals are processed by a perception BCU and then sent to the tra-
jectory BCU which passes it to the trajectory BCUs of the two neighbouring legs.
The leg controllers inhibit switching from the stance into the swing phase, when
its two neighbouring BCUs are not sending a ground contact signal. This rule en-

118

sures that a maximum number of three legs are swinging at the same time. Thus,
the robot's legs are always in a stable configuration. Combination of local alternat-
ing leg movements and the mentioned coordination rule lead to a global organic
walking behaviour. Different walking patterns arise in a self-organizing way by
increasing or decreasing the stance phase's duration without using a pre-
programmed gait. In contrast to the stance phase the swing phase, as was observed
in the stick insect Carausius morosus, has a fixed duration and can not be varied.
So, the gait is adapting to the robot's walking velocity in a self-organizing way. In
a very slow gait, achieved by usage of a stance phase about five times longer than
the swing phase, a pentapod gait can be observed. So, five feet are on the ground
while just one leg is swinging. Shortening the stance phase until it is as long as the
swing phase, a tetrapod and a tripod result smoothly [5]. These gaits are observ-
able in nature as well and biological experiments have shown that insects move in
a very similar way and do not make use of a hard switching between their gaits.

Turning and Curve Walking

One advantage of OSRAR's symmetric body is its ability to rotate around its
centre without taking more space than in a standing posture. In contrast to walking
the legs have not to be separated in left and right legs, moving in opposite direc-
tion in respect to the body centre, during rotating all legs move into the same di-
rection. A rotating of the robot is achieved by one BCU per leg setting the AEP
and the PEP of each leg on the same value. So changing two parameters while
maintaining the coordination rule leads to a completely different behaviour.

Another challenging behaviour is curve walking. One simple approach to
achieve curve walking is to shorten the stance trajectories of the three legs at the
inner side of the curve and enlarging the stance trajectories of the three legs at the
outer side. Diverging the PEP and AEP of the outer legs and converging the PEP
and AEP of the inner legs lead to a curve walking. Converging the PEP and AEP
until they change sides and diverge again, leads in the end to the above described
turning behaviour. Thus, one BCU per leg is sufficient to produce a smooth transi-
tion from straight walking over curve walking to turning by changing the AEP and
PEP values of the legs.

Another approach of curve walking, which can also be observed in experiments
with the stick insect Carausius morosus [3], is to change the trajectory of each leg
independently. Further biological experiments and computer simulations showed
that decentralized control architecture combined with local rules lead to curve
walking based on individual stance trajectories for each leg without explicit calcu-
lations [6]. In the ORCA project a mixture of both approaches is used. For walk-
ing in a curve, the front leg's PEP and AEP are shifted in the above described way.
This shift of the extreme positions is detected by the next posterior legs and leads
also in a shift of their extreme positions. So a change in the front leg extreme posi-

119Organic Computing Fault-Tolerant Robot Control Architecture

Sayed Auf, M. Litza, M. Maehle

tions leads to a shift in the middle leg extreme positions and that leads to a shift in
the hind leg extreme positions. Thus, a change in the front legs is spread by local
rules through the whole system. The intensity of the middle and hind leg shifts de-
pend on the intensity of their anterior leg shifts. In the following experiments front
leg extreme position shifts are caused by a BCU that guides the robot to walk to-
wards a detected stimulus. In the presented experiments this stimulus is a heat
source, which can be detected by the heat sensor at the robot's head.

The System's Fault Tolerance

To show the system's robustness and dependability a strong structural body
modification was realised by a leg deactivation, which was achieved by clicking
the affected leg upwards and holding it above the robot's body. So a leg amputa-
tion is simulated, whereas in contrast to a real amputation the leg's weight is still
being carried by the walking machine.

A deactivated leg is recognised by an OCU because of the missing feedbacks
like ground contact or servo feedback. An OCU detecting a non-functional leg
will modify the responsible trajectory BCU in a way that it is channelling its
neighbouring legs the ground contact signals through. So the next leg waiting for
the ground contact signal of the defect leg will receive the ground contact signal of
the next functional leg. Thereby, the self-organized coordination of the remaining
legs is continued and the walking pattern adapts to the system's new structure [5].

Experiments and Results

In previous experiments with the above mentioned software architecture the
robot’s walking abilities were shown. Beside the self-organising walking pattern
and the robot’s capability to handle leg damages during straight forward walking
with an emergent gait [6], the walking machine’s curve walking was tested in [7].

In [7] was shown that during a leg amputation the robot is still able to navigate
towards a given goal position without any modifications in the robot’s control
software. But, without any changes of the machine’s walking behaviour it is hin-
dered in its stability during curve walking by the missing leg. The robot needs up
to twice as long for reaching its goal position as in a “healthy” state with all six
legs [7].

120

Coordination Extension

To remain true to the decentralised control architecture on the one hand and
improve the robots walking behaviour in a certain situation on the other hand, the
leg observing OCU was modified. The OCU of an amputated leg gives additional
information to its neighbouring legs’ OCUs. A neighbour leg changes its swing
start conditions to make the emerging gap caused by a leg amputation as small as
possible. The leg is waiting for its neighbours to come as close as possible in their
stance phase before starting its own swing phase. Its neighbours’ positions are de-
pending on their neighbouring legs’ swing directions. To give an example (FIG.
3a), the robot’s legs are numbered clockwise when regarded from above. The
neighbour leg ready to swing is called leg i and its functional neighbours are
called i-1 and i+1. In case that leg i-1 is swinging clockwise (cw) and leg i+1 is
swinging anti-clockwise (acw) leg i will start its swing phase when leg i-1 and leg
i+1 are near their AEPs. Another example with the opposite case is given in Fig.
3b. When the front left leg (FL) i+1 swings clockwise and the hind right leg (HR)
i-1 swings anti-clockwise the hind left leg (HL) i has to wait until its neighbours
are close to their PEPs. All four possible situations of the explained example are
shown in Tab. 1.

Figure 3: Example for the coordination extension. a) Front left leg (FL) as neighbour of a dam-
aged leg is allowed to swing when its functional neighbours, front right leg (FR) and hind left leg
(HL), are near their AEPs. b) Hind left leg (HL) as neighbour of a damaged leg is allowed to
swing when its neighbours, front left leg (FL) and hind left leg (HL), are near their PEPs.

Table 1: Position areas in stance phase of the functional neighbours of leg i which are the pre-
conditions for leg i to start its swing phase depending on the neighbouring leg’s swing direction
(anticlockwise acw or clockwise cw).

 i-1 i+1
swing direction acw cw acw cw
area around PEP AEP AEP PEP

121Organic Computing Fault-Tolerant Robot Control Architecture

Sayed Auf, M. Litza, M. Maehle

Experimental Setup

For being able to compare the experiments of this work to previous ones, the ex-
perimental setup is the same as in [7].
The setup is a 230x160 cm flat indoor-area in which the robot can freely walk.
The Robot is equipped with two markers, one at its centre on top of his head and
one at its front between the two front legs. The markers horizontal distance is 10
cm and the vertical 15 cm. A third marker is used for the heat source, also placed
in the scene. The distance between the robot’s centre marker and the position a
foot touches the ground is varying depending on the robot’s leg posture from 18 to
26 cm. The whole scenario is captured by a standard camera 310 cm above the
ground. The results in [7] have shown the leg amputation’s influence on the ro-
bot’s curve walking behaviour. In two situations the robot is significantly hindered
needs nearly twice as long for reaching its goal than in all other runs. These situa-
tions were a left curve walk with a right middle leg amputation and a right curve
walk with a left middle leg amputation. In both cases the amputation causes a
turning towards the hindered body side. The following experiments concentrate on
these two critical situations. Two robot heat source configurations have been
tested: one left middle leg amputation in a right curve walk and one right middle
leg amputation in a left curve walk.

By rotating its head the robot scans its environment for heat sources. One of the
results is shown in Fig.4. The coordination system in Figure 4 shows on the x and
y-axes the robot's position in the indoor-area in cm. The robot's centre is marked
as a circle with an arrow giving the robot's orientation, while the target heat source
is represented as a diamond. Over time recorded positions of the robot result in the
six-legged machine's walking path and are marked with additional timestamps.
Time t=0 as well as the time passed until the robot reached its target and the time
when the robot detects the heat source are given in Fig. 4. About the x-Position
120 the robot’s right middle leg is amputated and at time 10 s the heat source is
detected. Its orientation shifts towards the heat target while at about x-position 120
the robot’s right middle leg was amputated to test the controller extension. Al-
though the robot is still hindered by the missing leg that has to be carried with
him, it reaches the heat source in a shorter time than in previous experiments. The
time the hexapod reaches its target (63 s) is not comparable par to par because of
the different distances that the robot walked in Fig.4 and Fig.5. Although the dis-
tance walked by the robot is longer in the previous runs (Fig.5), in three of five
cases the walking machine reaches the heat source in a significant shorter time
than in previous runs without the coordination extension. In the other two cases
the robots does not find the heat source and misses its target.

Fig. 5 shows the result with the same setup and a robot using the not extended
control architecture. In comparison Fig. 5 shows a stronger influenced walking
path than it can be seen in Fig. 4. Using the control architecture without any addi-
tional information like it was done in previous works the robot reaches also its

122

goal, but the above mentioned decentral extension to the control system, based on
local rules between the neighbouring legs can improve the robots abilities as well
as its robustness.

Figure 4: Robot’s walking path shown as positions(XY). Robot's centre shown as circle, orienta-

120.

Figure 5: Result from a previous experiment when the robot uses the original control architec-
ture without the extension. Robot’s walking path shown as positions(XY). Robot's centre shown
as circle, orientation shown as arrow, heat source as diamond. At time 30 s the robot detects the
heat source and needs 119 s to reach the target. A right middle leg amputation [ra] was triggered
at X-Position 120.

123

tion shown as arrow, heat source as diamond. At time 10 s the robot detects the heat source and
needs 63 s to reach the target. A right middle leg amputation [ra] was triggered at X-Position

Organic Computing Fault-Tolerant Robot Control Architecture

El Sayed Auf, M. Litza, M. Maehle

Summary

The introduced approach for controlling the six-legged walking machine
OSCAR shows a complex curve walking behaviour with six legs handled by a de-
centralized control architecture based on local rules by changing a few parameters.
Moreover, it is explained how continuous changing of parameters can induce a
smooth transition between different walking behaviours and how a decentralized
control architecture can be extended by additional local rules to improve the sys-
tems abilities. The presented experiment shows the improvement to the system’s
fault tolerance and robustness towards strong damages like leg amputations by a
decentral extension of the control architecture and how the system is able to han-
dle even strong damages while maintaining complex behaviours by adapting in a
dependable way.

Beside the handling of strong damages it is open how to give the system the
ability to detect smaller defects like loose screws or broken gears in its servo mo-
tors and if it is possible to compensate them.

1) Brockmann W, Großpietsch K.-E, Maehle E, Mösch F: ORCA - Eine Organic

Computing-Architektur für Fehlertoleranz in autonomen mobilen Robotern.
Mitteilungen der GI/ITG-Fachgruppe Fehlertolerierende Rechensysteme, Nr. 33, 3-17,
St. Augustin 2006

2) Brockmann, W, Maehle E, Mösch F: Organic Fault-Tolerant Control Architecture for
Robotic Applications. 4th IARP/IEEE-RAS/EURON Workshop on Dependable Robots
in Human Environments, Nagoya University/Japan 2005

3) Dürr V, Ebeling W: The behavioural transition from straight to curve walking: kinetics
of leg movement parameters and the initiation of turning. The Journal of Experimental
Biology 208, 2237-2252, 2005

4) Dürr V, Schmitz J, Cruse H: Behaviourbased modelling of hexapod locomotion: Linking
biology and technical application. Arthropod Structure and Development, 33 (3), 237-
250, 2004

5) El Sayed Auf A, Mösch F, Litza M: How the Six-legged Walking Machine OSCAR
Handles Leg Amputations. Proceedings of the Workshop on Bio-Inspired Cooperative
and Adaptive Behaviours in Robots at the SAB IX, Rome 2006

6) Rosano H, Webb B: The control of turning in real and simulated stick insects. Proceed-
ings of the Ninth International Conference on the Simulation of Adaptive Behaviour,
Lecture Notes in Artificial Intelligence volume 4095, (2006)

7) El Sayed Auf, A; Larionova, S.; Litza, M.; Mösch, F.; Jakimovski, B.; Maehle, E.: Ein
Organic Computing Ansatz zur Steuerung einer sechsbeinigen Laufmaschine. AMS,
233-239, Springer-Verlag, Berlin Heidelberg 2007

124

within priority programme 1183 under grant reference MA 1412/7-1.

References

Acknowledgments

This work was funded in part by the German Research Foundation (DFG)

Intrusion Detection via Artificial Immune
System: a Performance-based Approach

Andrea Visconti, Nicoló Fusi, Hooman Tahayori

Abstract In this paper, we discuss the design and engineering of a biologically-
inspired, host-based intrusion detection system to protect computer networks. To
this end, we have implemented an Artificial Immune System (AIS) that mimics
the behavior of the biological adaptive immune system. The proposed AIS, consists
of a number of running artificial white blood cells, which search, recognize, store
and deny anomalous requests on individual hosts. The model monitors the system
through analysing the set of parameters to provide a general information on its state
— ill or not. When some parameters are discovered to have anomalous values, then
the artificial immune system takes a proper action. To prove the effectiveness of the
suggested model, an exhaustive test on the AIS is conducted, using a server run-
ning Apache, Mysql and OpenSSH, and results are reported. Four types of attacks
were tested: remote buffer overflow, Distributed Denial of Service (DDOS), port
scanning, and dictionary-attack. The test proved that our definition of self/non-self
system components is quite effective in protecting host-based systems.

1 Introduction

Artificial Immune Systems (AISs) are inspired by the workings of the biological
immune systems [1, 2, 3], and focus their capability to recognize elementary self

Andrea Visconti
Universitá degli Studi di Milano, Dipartimento di Informatica e Comunicazione, Via Comelico
39/41 Milano 20135 Italy, e-mail: andrea.visconti@unimi.it

Nicoló Fusi
Universitá degli Studi di Milano, Dipartimento di Informatica e Comunicazione, Via Comelico
39/41 Milano 20135 Italy, e-mail: nicolo.fusi@studenti.unimi.it

Hooman Tahayori
Universitá degli Studi di Milano, Dipartimento di Scienze dell’Informazione, Via Comelico 39/41
Milano 20135 Italy, e-mail: hooman.tahayori@unimi.it

Please use the following format when citing this chapter:
Visconti, A., Fusi, N. and Tahayori, H., 2008, in IFIP International Federation for Information Processing, Volume 268;
Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 125–135.

Andrea Visconti, Nicoló Fusi, Hooman Tahayori

components of the body — endogenous or innocuous — and elementary non-self
components of the body — exogenous or potentially pathogenic. Artificial immune
systems proposed in the last decade were mainly studied and implemented for solv-
ing real-world problems (spam filtering, intrusion detection, pattern recognition,
etc.). In particular, the most representative applications of artificial immune systems
are from the area of computer security and fault detection [4].

Artificial immune systems, based on the recognition of self/non-self behavior,
require unambiguous definitions of all permitted and/or non-permitted actions in
a system. A number of ground-breaking solutions to this problem are proposed
[5, 6, 7, 8, 2]. In particular, interesting approaches suggested in [5, 9] introduce
the possibility of using a sequences of system calls, executed by running UNIX
processes, as discriminator between normal and abnormal behavior. Moreover, ref-
erences [10, 11, 12] discuss the design and testings of Lisys, a LAN traffic anomaly
detector that monitors TCP SYN packets for detecting unusual requests, alerting
administrator when abnormal connections are detected. In [13], authors suggested
collecting data on normal and abnormal behaviors in host-based and network-based
systems. Such data, collected in a realistic context, contains information that may be
used for automatically detecting, analyzing and controlling future anomaly behav-
iors due to new and unpredictable network attacks. Tarakanov et al. in [7] described
an artificial immune system based on a rigorous mathematical approach, that applied
the singular value decomposition to the matrix of connection logs and mapped the
users’ requests into a real two-dimensional vector space. Authors argued that sim-
ilar self/non-self requests lump together. In [14, 15] authors suggested interesting
approaches based on the Danger Theory [16]. This new theory has shifted control
of immunity to the tissues that need protection. Inspired by the behavior of innate
immune system, Pagnoni and Visconti in [13] illustrated an artificial immune sys-
tem based on the working of the macrophages. The authors argued that the main
idea of an intrusion detection system is not to recognize and kill a specific intruder
in the most effective way, but rather to find and kill any intruder as soon as pos-
sible. In addition to the artificial immune systems previous mentioned, authors in
[5, 17, 8, 18] suggested applying the negative selection algorithm to the problem of
network intrusion detection.

Unfortunately, none of these solutions has achieved one hundred percent pre-
cision. Nevertheless, real-world applications have the necessity of (a) providing a
strong, reliable discrimination between normal and abnormal behavior and (b) main-
taining a complete database of “good or bad behavior” to be used by the self/non-
self recognition algorithms. The choice of self/non-self behaviors is crucial because
some bad behavior not stored in the database may not be recognized as network
attacks; moreover a large database of self/non-self behaviors entails a substantial
degree of slowness that is not acceptable in real-time applications.

In order to overcome these problems, we have designed a biologically-inspired
intrusion detection system based on the paradigms of the acquired immune system.
Being more slow than the innate one, the acquired immune system is the only one
that remembers the previously encountered attacks, recognizes new attacks of un-
wanted intruders entering the system, and provides a proper response to the attack of

126

Intrusion Detection via Artificial Immune System: a Performance-based Approach

the enemies. Diagnosing an abnormal behavior of a specific type requires knowing
which, if any, set of parameters characterizes the anomaly. This set of parameters is
called antigen signature. Some such signatures are well-known, and can be easily
recognized automatically, others are just less well-defined, and can be more diffi-
cult to recognize, whilst others are completely unknown. To this end, we analyze
and improve existing solutions in computer security through the design, engineer-
ing and testing an intrusion detection system that recognizes anomalous values of
parameters of a given system. These anomalous values can be interpreted as a sign
of an attack to the system comparable with fever in the case of presence of infection
in body.

In this paper, we suggest an artificial immune system based on several agents
that mimics the behavior of white blood cells in the acquired immune system. Such
white blood cells — or lymphocytes, — cooperate using a specific communication
protocol in order to protect the system against exogenous or endogenous attacks.
Every white blood cell is a separate process that monitors the parameters of the
system and checks the presence of non-self antigen signatures.

In the sequel, in section 2 we discuss the principles of immune systems, in par-
ticular, we focus our attention on the adaptive immune systems. In Section 3, we
describe the design and engineering of our artificial immune system; while an in-
tensive testing is presented in section 4. Finally in Section 5, we provide pros and
cons of our model and draw conclusions.

2 Biological Immune System

Biological immune systems draw up several lines of defense to protect the organism.
This defense systems include chemical and physical barriers, innate immune system
and adaptive immune system.

Chemical and physical barriers provide the first line of defense in the fight against
invaders. Examples of the chemical and physical barriers are skin, gastric acid in
the stomach, eyelashes, tears, and so on. These barriers try to protect the body
against pathogens that enter an organism, and consequently reduce the probabil-
ity that the pathogens will lead to an illness. Unfortunately, some foreign invaders
that are present on the skin surface pass through injuries on the skin.

When the chemical and physical barriers fail to stop unwanted intruders, invaders
are attacked by the cells of the second line of defense: the innate immune system.
The innate immune system recognizes and attacks invaders in a generic way, with no
necessity of previous exposure to them. The cells involved in the innate reaction are
leukocytes such as macrophages, natural killer cells, mast cells, basophils, and so on.
These leucocytes (a) release chemical factors that cause inflammation, swelling and
local blood vessel dilation; (b) recruit immune cells to sites of infection; (c) attack
everything of a foreign nature, engulfing pathogens and dead cells in a process called
phagocytosis; (d) and finally, activate the adaptive immune system.

127

Andrea Visconti, Nicoló Fusi, Hooman Tahayori

The adaptive or acquired immune system provides the third line of defense in the
fight against intruders. It does not replace the innate immune system, but rather im-
proves it. The ability of the adaptive immune system to kill invaders is based on the
capacity of recognizing several kinds of pathogens and remembering specific anti-
gen signatures after the resolution of the infection. Comparing to the previous two
lines of defense, the adaptive immune system works in a more complex way because
its responds to an attack is antigen-specific. Being exposed to different pathogens,
the adaptive immune system learns to identify enemies and as a result its specific
response will be more effective than a generic response of the innate immune sys-
tem.

The cells involved in the acquired reaction are leukocytes such as memory B
cell, killer T cell, helper T cells, and so on. When activated, these leucocytes are
able to (a) distinguish the cells of the body from unwanted invaders; (b) recognize
specific signature for each non-self antigen; (c) generate a specific immune response
against invaders; (d) remember specific signatures for each non-self antigen; (e) and
eventually, quickly remove the previously encountered non-self antigen.

Unfortunately, these lines of defense, that generate a powerful barrier against
intruders, are not perfect and sometimes fail. Failures occur when the ability to
fight invaders of one or more components is reduced — immunodeficiency — or
the ability to recognize self and non-self cells is compromised — autoimmunity. In
both cases, an organism will be vulnerable to infections.

3 Design and Engineering of Artificial Immune System

To achieve the ultimate goal of designing and engineering an intrusion detection
system (IDS) based on the workings of the acquired immune system, clear under-
standing of the characteristics of the acquired immunity is of great importance. In
particular, we concentrated on (a) the acquisition of a clear discrimination between
self — regular — and non-self — unwanted — system behaviors, (b) the elimina-
tion of recognized infections — recognized attacks —, (c) the take care of system
injuries — bugs, — (d) the detection and elimination of new infections — new at-
tacks, — and (e) the absence of autoimmune reactions.

The design and engineering of the proposed AIS is based on the previous points
and on the observation that getting into a system without leaving any track is vir-
tually impossible. We search for these tracks by considering the parameters of the
system when our server is under attack. In order to identify such tracks i.e. the fin-
gerprint of attacks, the values of different system parameters were surveyed. The
gathered data was analyzed and more than 150 graphs were generated. Some of
them did not show any significant change during an attack, while some did. We
conceived the artificial immune system with these ideas in mind.

The proposed AIS is a host-based system that consists of a set of processes —
helper T-cells, killer T-cells, and memory B-cells — running on a server. These
processes act and cooperate as digital lymphocytes in order to discover suspicious

128

Intrusion Detection via Artificial Immune System: a Performance-based Approach

values of the parameter of the system and face external attacks. The artificial im-
mune system must be initialized through a training phase, in which the AIS defines
the number of running lymphocytes. In fact, this number is not constant, but is opti-
mized experimentally because it depends on the hardware features and the workload
of the server. This number can vary between a lower and an upper bound, improv-
ing the performance of the AIS when the system is under attack. Furthermore, if
such number falls under the optimized threshold, new lymphocytes are automati-
cally created. In addition to the task of defining the number of running lymphocytes,
the training phase is also responsible for setting up the parameters of all processes.
Indeed, the digital lymphocytes learn to identify self/non-self behaviors, analyzing
the data of system parameters under the supervision of an expert. After the training
phase, the artificial immune system is ready to be activated.

Helper T-cells Are processes, or agents, of the artificial immune system. Their main
objectives are identifying an anomalous behavior in the monitored parameters and
promoting the activation of adaptive immune response. In order to do so, helper T-
cells collect a sample data of actual system parameters, compute the mean and the
standard deviation of such data, and compare the current values to the previously
stored values. If the mean of each parameter monitored exceeds a given threshold
— mean stored in memory plus or minus the standard deviation stored in memory,
— the current interval is defined non-self. Moreover, helper T-cells try to identify
the type of attack using type-1 fuzzy rules and promoting a quick immune response.
Indeed, they stimulate other cells of immune system, controlling and inhibiting im-
mune attacks against self-antigens.

Every helper T-cell has a lifespan at the end of which the cell dies. This means
that the cell will be regenerated, will undergo the negative selection phase, and hence
the ability to recognize possible unwanted attacks will be improved.

Memory B-Cells Are processes that remember attacks previously encountered.
When they recognize a set of parameters that show an anomalous behavior previ-
ously identified, the artificial immune system stops the recognition phase and mem-
ory B-cells inform killer T-cells that the system is under attack, specifying what kind
of attacks is.

Killer T-cells Are processes that take proper actions for denying and eliminating
unwanted behaviors. If the attack type is known, a predefined action will take place.
For example, in presence of a denial of service attack, killer T-cells deny unwanted
requests, banning the IP addresses of the senders, while in presence of a reverse
shell techniques, killer T-cells eliminate such shells. On the other end, if the attack
type is unknown, a notification is sent to the system administrator, alerting him of
the security threat.

All digital cells are separate Java processes, so if one process crashes it will not
affect the working of the artificial immune system. Designing the system as a set
of different processes offered greater security and stability, at the price of a more
difficult communication between processes. In order to solve this problem, we im-
plemented a communication protocol. When authenticated, processes can commu-

129

Andrea Visconti, Nicoló Fusi, Hooman Tahayori

nicate with each other by calling specific functions. This communication protocol
is necessary to stimulate groups of lymphocytes, or the entire artificial immune sys-
tem, when the system is under attack.

4 Testing

All tests were made on a dual Intel R© PIII R© server with 1.5Gb of RAM on
which Gentoo linux [19] was installed; running Apache 2.0.59 with PHP 5.2.5,
Mysql 5.0.40 and OpenSSH 4.7. Several types of attacks were tested: port scan-
ning (NMAP), remote buffer overflow, Distributed Denial of Service (DDOS) and
dictionary-attack against SSH authentication. These types of attack were chosen be-
cause they have very different performance fingerprints and are the most common.

In order to simulate a real-world situation, a fake institutional website was im-
plemented and the system was tested with different amounts of traffic:

None No one, or a small number of users, surf the website. This profile has
been used in order to provide baseline data.

Moderate An average number of users surf the website.
Intense A really high amount of users surf the website, making a huge num-

ber of self requests. This profile has been used in order to evaluate the
behavior of the system under severe stress condition.

Figure 1 Interrupts per second during a DDOS attack without legitimate traffic

The population of digital cells used for the testing is as follows: 3 to 5 killer T-cells,
5 to 10 helper T-cells and 3 to 5 memory B cells.

130

Intrusion Detection via Artificial Immune System: a Performance-based Approach

The traffic has been simulated with JMeter [20], a stress testing tool for web
applications provided by the Apache software foundation.

Figure 2 Interrupts per second during a DDOS attack under moderate traffic

Figure 3 Interrupts per second during a DDOS attack under intense traffic

As mentioned in Section 3, our AIS monitors the system parameters in order to
identify unusual patterns that may be related to unwanted behaviors. For example,

131

Andrea Visconti, Nicoló Fusi, Hooman Tahayori

figures 1, 2 and 3 show the behavior of a system parameter during a DDOS attack.
Analyzing the values of this parameter, an unusual pattern in the number of interrupt
requests can be recognized.

Figure 4 Unused cache entries during a Buffer Overflow attack under moderate traffic

Figure 5 Unused cache entries during a Buffer Overflow attack under intense traffic

132

Intrusion Detection via Artificial Immune System: a Performance-based Approach

Figures 1, 2, and 3 show clearly that DDOS attack is rather easy to spot, because
it largely affects the system performance. Unfortunately, as can be seen in the fig-
ures 4 and 5, not all kinds of attack are always so easy to recognize. Such figures
represent the unused cache entries during a buffer overflow attack while an average
and large number of users, respectively, surf the website. In the first two cases, —
figures 4 and 5, low and moderate workload — the artificial immune system is able
to recognize the anomaly. In the last case — figure 6, high workload — the artificial
immune system fails. It is easy to see that a high workload situation may introduce
an excessive level of background noise, decreasing the ability of the system to rec-
ognize anomalous behaviors. Such situations affect negatively the performance of
the artificial immune system, enhancing the risk of false positives.

Tables 1, 2, and 3 summarize the results of the testing activity. For each of the
four attacks tested, we mark the set of system parameters that may indicate the
presence of an attack.

Table 1 No traffic

Attacks UsedIH UnusedCE PGfault SysCPU Interr TRate

Buf Overfl. X X X X
DDOS X X
Scan NMAP X X X X X
Bruteforce X X

Table 2 Moderate traffic

Attack UsedIH UnusedCE PGfault SysCPU Interr TRate

Buf Overfl. X X X
DDOS X X
Scan NMAP
Bruteforce X X

Table 3 Intense traffic

Attack UsedIH UnusedCE PGfault SysCPU Interr TRate

Buf Overfl. X X
DDOS X X
Scan NMAP X X X
Bruteforce X X

As tables 1, 2, and 3 illustrate, recognizing an attack in the presence of many
net-surfing users is increasingly difficult, and in some cases is rather impossible.

133

Andrea Visconti, Nicoló Fusi, Hooman Tahayori

For example, recognizing a port scanning attack is almost impossible, given the
anomalous behavior of the monitored parameters under different traffic profiles (see
tables 1, 2 and 3).

The results of an exhaustive testing are summarized in table 4.

Table 4 Test results

No Moderate Intense

Buf Overfl. 95%-100% 75%-90% 65%-85%
DDOS 100% 95%-100% 90%-100%
Scan NMAP 0%-20% 0% 0%-5%
Bruteforce 100% 90%-100% 85%-100%

5 Conclusions and Future Works

The suggested artificial immune system is an IDS based on the idea of equipping
servers with the technological equivalence of an acquired immune system. To this
end, our AIS monitors and analyzes a set of system parameters to check for anoma-
lous behaviors. Although still at a preliminary stage, the exhaustive testing revealed
that AIS is able to quickly detect anomalous behaviors previously encountered, deny
proliferation of foreign processes by killing dangerous processes before they will
widely used, and recognize attacks with a strong fingerprint such as denial of ser-
vice and dictionary attack. On the other hand, the intensive testing has proved that
in order to avoid a large number of false positives, we have to lower the sensibil-
ity of the system, affecting the recognition of some kinds of attack. Indeed, under
these circumstances the system cannot recognize an NMAP scan; moreover, in pres-
ence of many net-surfing users recognition is increasingly difficult, and sometimes
is impossible.

It should be stressed that yet, no single method, biological or artificial, can
achieve one hundred percent precision. For these reasons, the suggested system is
not meant to replace firewalls, login policies, or antivirus because it cannot blocks
every kind of attack. The proposed artificial immune system should be used in con-
junction with other complementing technologies either biologically inspired or not.

Our future works will be devoted to improve the AIS, extending actual acquired
immunity with specific components of a second line of defense: the innate immu-
nity.

134

Intrusion Detection via Artificial Immune System: a Performance-based Approach

6 Acknowledgements

This research was funded by the State of Italy via FIRST (Fondo per gli Investimenti
nella Ricerca Scientifica e Tecnologica).

References

1. D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change detection:
algorithms, analysis and implication. In: Proceedings of the 1996 IEEE Symposium on Com-
puter Security and Privacy, (1996)

2. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff T.: A sense of self for UNIX processes. In:
Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy, (1996)

3. Forrest, S., Hofmeyr, S., Somayaji, A.: Computer immunology. In: Communication of ACM
40(10), 88-96 (1997)

4. Dasgupta, D.: Advances in Artificial Immune Systems. In: IEEE Computational Intelligence
Magazine, (November 2006)

5. Hofmeyr, S., Somayaji, A., Forrest, S.: Intrusion Detection using Sequences of System Calls.
In: Journal of Computer Security 6(3), 151-180 (1998)

6. Dasgupta, D.: Immune-based intrusion detection system: A general framework. In: Proceed-
ings of the 22nd National Information Systems Security Conference, (1999)

7. Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applica-
tions. Springer-Verlag, New York (2003)

8. Forrest, S., Glickman, M. R.: Revisiting LISYS: Parameters and Normal behavior. In: Pro-
ceedings of the 2002 Congress on Evolutionary Computation, (2002)

9. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: Alterna-
tive data models 1999. In: IEEE Symposium on security and Privacy, (1999)

10. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. In: Evolutionary Com-
putation, 8(4), 443-473 (2000)

11. Hofmeyr, S.: An immunological model of distributed detection and its application to com-
puter security. In: PhD thesis, University of New Mexico, (1999)

12. Balthrop, J., Forrest, S., Glickman, M.: Revisiting lisys: Parameters and normal behavior. In:
Proceedings of the Congress on Evolutionary Computation, (2002)

13. Pagnoni, A., Visconti, A.: An Innate Immune System for the Protection of Computer Net-
works. In: Proceedings of the 4th International Symposium on Information and Communica-
tion Technologies, (2005)

14. Aickelin, U., Cayzer, S.: The Danger Theory and Its Application to Artificial Immune Sys-
tems. In: Proceedings of 1st International Conference on Artificial Immune Systems, (2002)

15. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger Theory: The Link between
AIS and IDS? LCNS 2787, (2003).

16. Anderson, C., Matzinger, P.: Danger: the view from the bottom of the cliff. In: Seminars in
Immunology, 12(3), 231-238 (2000)

17. Kim, J., Bentley, P.: The human Immune system and Network Intrusion Detection. In: Pro-
ceedings of 7th European Congress on Intelligent techniquesSoft Computing, (1999)

18. Gonzalez, F., Dasgupta, D.: An Immunogenetic Technique to Detect Anomalies in Network
Traffic. In: Proceedings of the International Conference Genetic and Evolutionary Computa-
tion (GECCO), (2002)

19. Gentoo linux, available at http://www.gentoo.org/
20. Apache JMeter, available at http://jakarta.apache.org/jmeter/

135

Immuno-repairing of FPGA designs

Norma Montealegre, Franz J. Rammig

Abstract FPGAs can be used for the design of autonomic reliable systems. Advan-
tages are reconfiguration and flexibility in the design. However commercial FPGAs are
first prone to errors. Second, the design flow is not yet supported for the use of fault
tolerance techniques like Built-In Self-Tests. Fault tolerance can be reached through
error detection and fault recovery. Most error detection techniques are not suitable for
on-line detection because of detection times and long and inflexible training. This pa-
per proposes a fault tolerant design for FPGAs. It has a Built-In Self-Test which error
evaluation and fault recovery is supported by computing techniques inspired in the
Immune System. A fault recovery and a hardware implementation model are also to
be presented.

1 Introduction

Nowadays there is the demanding requirement of having systems which faults can be
recovered without human intervention. That is the field of autonomic reliable systems.
Autonomous robots and vehicles in outer space and undersea systems [8] are prone to
errors due to its dynamic and environment of action. These systems are designed with
radiation-hardened or higher and lower temperature range components, like radiation-
hardened FPGAs [10]. Hardware design techniques based on Triple Modular Redun-
dancy help in developing FPGA-based circuits resilient to SEUs (Single Event Upset)
[7], like the tool referred in [11] or the TMR-Tool from Xilinx [21]. While circuits are
hardened with special components and TMR has a limited fault recovery, a seamless
design flow for fault recovery is not present yet.

Some algorithms were developed in the field of Artificial Immune Systems, in-
spired in the vertebrate’s immune system. They have served in solving computing
problems. Nevertheless those algorithms have inspired also electronic designs in the

Norma Montealegre
Heinz Nixdorf Institute, Fuerstenalle 11, 33102 Paderborn, Germany
e-mail: norma@upb.de

Please use the following format when citing this chapter:

Montealegre, N. and Rammig, F.J., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-
Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 137–149.

Keywords: autonomic systems, fault tolerance, immunocomputing, FPGA, BIST.

Norma Montealegre, Franz J. Rammig

searching of fault tolerance. One example is the research coined as ”Immunotronics”
(Immune + Electronics), the hardware fault tolerance inspired by the immune system
[3]. In [18] a centralized immune layer is presented. The learning phase identifies cor-
rect operation of the systems as ”self” building antibody patterns composed of: inputs,
excitation, correct states and outputs. In the operational phase, the identification of
”non self” operations is implemented by means of genetic algorithms. On the other
side, a decentralized immune layer has taken inspiration from cell biology to create a
multicellular FPGA. This idea emerged the field of Embryonics which together with
Immunotronics generate a two level structure [2]. The first level is composed of the
embryonic cells which communicate across data channels. A second layer is com-
posed by antibodies which communicate also across data channels and are named
together the lymphatic network. Trans-layer communication channels are present be-
tween antibodies and embryonic cells as well. Antibodies store self-tolerance condi-
tions. Furthermore, healing of the embryonic cells is regarded by [17], who considers
a cell’s self-test for the fault diagnosis, and a cell repair or elimination through recon-
figuration of the cell’s routing. All these methods carry to a new hardware conception
not available in commercial FPGAs.

Immunocomputing explores, in a formal way, the principles of information pro-
cessing that proteins and immune networks utilize in order to solve specific com-
plex problems [16]. Free binding among proteins inspired Formal Immune Networks,
which are able to learn, recognize and solve problems. This method is based in the Sin-
gular Value Decomposition of a matrix. It proved to have small learning and recog-
nition times and a good resource efficiency regarding memory and computing [13].
Moreover, it presents a self-organizing property since, for a training set, iterations
within the algorithm self-converge to antibodies [13]. Making use of its efficiency,
Immunocomputing can be used for on-line error detection [15].

A self-test system has two main components: a test pattern generator and a test
response evaluator. The test patterns and expected responses are stored in a memory.
It is necessary a control signal to turn on the testing, a counter to address the mem-
ory and a comparator for comparing the obtained response with the expected one [9].
Because of the quantity of test patterns, this approach is time consuming. There are
some alternatives of output response analysis in which output data compaction takes
place. One of them are concentrators, counting techniques, signature analysis, accu-
mulators, comparators, etc [12]. Comparison-based response evaluators compare on
a vector-by-vector basis the expected responses stored in a memory and the output
responses of the circuit under test. This approach is simple and modular. Besides a
distributed Built-In Self-Test with n-test pattern generators, n-circuits under test and
one test response evaluator can be applied. A BIST system can also work on-line [1].
The potential problem is the long time that may be required to cycle through the test
patterns and evaluate the responses before determining if an error is present or not,
[5] approaches this problem. This is critical for systems where the BIST works on-
line and fault recovery should be done at time. A molecular approach is given by [4]
and [19], but a circuit oriented design is not taken into account. Therefore a correct
partitioning of the circuit, a distributed BIST with a fast response evaluator and fault
recovery support is needed. This paper is a contribution following this tendency.

138

Immuno-repairing of FPGA designs

Fault tolerance can be reached through error detection and fault recovery. The
present paper proposes a distributed fault tolerant design for FPGAs using For-
mal Immune Networks and self-test systems. The system has a distributed error
detection mechanism through distributed Built-In Self-Tests inside a FPGA, see
Fig. 1. BIST synthesis for a very large design may be possible within linear
time by extracting sub-circuits which are almost constant in size [6]. That ac-
celerate logic BIST synthesis procedures and reduces the time error detection
takes. The circuit under test is one part of a partitioned circuit. The circuit re-
ceives a test pattern and the response is evaluated by means of cFINs (cytokine
Formal Immune Networks) [14]. BIST can profit of the celerity offered by the
cFIN method in detecting errors applying a determined error correction method
at the proper time. Test response evaluation and fault recovery by cFIN for fault
tolerant FPGA circuit designs is the main contribution of the present work. The
decentralized BIST procedure is controlled by a global test scheduler module,
a fault processing mechanism and a fault recovery module. A hardware imple-
mentation of the whole system is also proposed.

139

Figure 1 Diagram of the proposed system

Norma Montealegre, Franz J. Rammig

Figure 2 shows a BIST proposal with on-line learning. The system needs to be trained
with the test patterns before being operational. For test response evaluation purposes,
outputs of the Circuit Under Test are evaluated with a method inspired in the cytokine-
Formal Immune Networks and presented in Section 5. Making a biological analogy, an
antibody represents the expected output transformed into the Formal Immune Network
space. An antigen is the response of the circuit under test. A cytokine represents the
action to be taken for fault recovery purposes.

It is important to note that after training of the system, on-line learning can take
place. This is possible mapping the value of the new Ai test pattern into the cFIN
space. This point is added to the compacted expected response data (compaction or
compression performed by means of cFIN). Therefore, in case of a change in the
training patterns, the training phase does not necessarily have to be repeated with the
entire training set [13].

Reconfiguration

cFINCircuit under
test

I
O

(c,A)

learning
On-line

Figure 2 Built-in-self-test with a cFIN on-line learning

If this BIST model is applied for a whole circuit, the complexity in building the
training matrix and the time for training and recognition may explode. Therefore,
circuit partitioning [6] is considered, see Fig.1. Methods for circuit partitioning are
not the scope of this paper.

A training matrix V (c,A) should be provided prior to the operation of the system
(test pattern generation). A is a matrix with information over expected responses under
defined inputs. Each expected response should be linked to a recovery procedure in
case of failure, expressed by c. In case of combinational circuits, training patterns are
composed of Input/Outputs. But, sequential circuits consider also stimuli and internal
states, as seen in Fig. 3. For test purposes, such circuits may be transformed to a
sequence of combinational ones using conventional scan-path techniques.

The training matrix should regard the procedure for fault recovery under failure.
For every training pattern is recommended to have a recovery alternative expressed in
an integer coded value c, see Fig. 4. c represents a cytokine that signals the action to
be taken at the time of finding an error.

The BIST Control Unit supports the hierarchical BIST strategy shown in Fig. 1.
It contains an input for starting the BIST and an output for indicating the end of the
test. A pattern counter determines the ending of a test. Two schemes to be considered
are possible at the time of designing the BIST, the test-per-scan and the test-per-clock

140

2 Built-In Self-Test Proposal

Immuno-repairing of FPGA designs

II OO S

E

Combinational Sequential

Figure 3 Consideration at the moment of building the training matrix

Figure 4 Test cases

(ci,Ai)

ci = [S | A | SA] Ai = [I | O | E | S]

S = Self

A = Action
SA = Specific Action

I = Input

O = Output

E = Stimuli

S = State

scheme. It is not the aim of this paper to give a detailed description. Please refer to
[20].

3 Global BIST

In order to apply a consistent error correction, the test schedule, fault processing and
fault recovery are global modules for the whole system.

Depending on the application, tests can be recurrent or preemptive. In the case of
a preemptive one, time error recognition should be considered in order to plan the
frequency of testing. Frequency of testing is a function of the clock rate as well. A test
session is a set of test unit processed in parallel and a BIST schedule is a series of test
sessions which is implemented by the BIST Control Unit in hardware.

The class or cytokine’s natural value represents the action to be taken in the design
when a failure occurs. It has to be specified which recovery method should be applied
for a specific failure. This data should be provided together with the training matrix
in the case of Supervised Learning but it could also be determined after the training
process by clustering points in the mapped FIN space. That is the case of Unsupervised
Learning. In the first case this array can be constructed with the following data:

c = {S | A | SA} (1)

Where:

S Self considers whether the recognized pattern is a failure ”non-self” or a particular
pattern. This can be used not only for failure detection, but also for warning states
not considered as malicious.

A Action considers a general action to be taken i.e. total reconfiguration.

141

Norma Montealegre, Franz J. Rammig

SA Specific Action considers a more refined method to recover from the failure.

Fault recovery is based on the reconfigurabilty property of FPGAs. Therefore, the
failure recovery can be executed by total or partial reconfiguration. Other alternatives
for fault recovery are application dependent and should be addressed at the time build-
ing the EA array.

The proposed BIST can be implemented as an Intellectual Property Core inserted into
the same FPGA as the circuit to be tested, Fig. 5. In this case, faults present in the
Circuit Under Test are also prone to appear in the BIST. An alternative is to provide
an external second FPGA which implements only this procedure.

Figure 5 Implementations as
an IP core

FPGA

Circuit under test

IP core

It is also possible to consider an external circuit composed of a DSP and a micro-
controller, like the one in Fig. 6. The DSP is able to compute in parallel the mapping
of points to the FIN and to compare distances among points [13]. The micro-controller
could implement modules of the global BIST. Nevertheless, faults in the connection
path between the circuit under test and the self-test system should be regarded in this
implementation case.

Figure 6 Implementation as
an external circuit FPGA

Circuit under testMicro-controller

DSP

142

4 Hardware Implementation

Immuno-repairing of FPGA designs

5 c-Formal Immune Networks

This section explains the method of training and recognition of a cFIN. This method
is used in the implementation of the response evaluation and fault processing of the
Built-In Self-Testing system. For a more detailed and extensive explanation of this
theory, please refer to [14], [13] and [15].

Immunocomputing intends to establish a new kind of computing. The main dif-
ference with other kinds of computing lays in its basic element, the formal protein.
A protein is an essential component of organisms and participate in every process
within cells. Proteins constitute epitopes present in antigens and antigen presenting
cells. Proteins constitute also paratopes present in antibodies. Epitope is the minimum
molecular structure that is able to be recognized by the immune system. One epitope
matches with a paratope in molecular recognition. Figure 7 shows the antigen binding
site of an antibody named as paratope that recognizes the epitope of an antigen or an
antigen presenting cell. An antigen presenting cell is a cell that has digested an antigen
and presents in its surface an epitope. An epitope is made of around 10 amino-acids.
The same applies to a paratope. A protein is composed of amino-acids arranged in
a linear chain. The 3D shape or tertiary structure of the epitope is recognized by a
paratope, see Fig. 7. It means, an epitope is a kind of surface protein. That is why
proteins will be seen as the basic element in Immunocomputing.

Antigen

or

Antigen Presenting Cell Epitope Paratope

Antibody

Figure 7 The epitope of one antigen or an antigen presenting cell is recognized by the paratope of
an antibody

Cytokines are also introduced. Cytokines are groups of proteins secreted by many
types of cells. Each cytokine binds to a specific cell’s surface receptor signaling a
specific action i.e. differentiation into plasma cells, antibody secretion or cell death.
They bind also through own receptors constituted from proteins too, see Fig. 8.

B-cells in the immune system secrete antibodies. They also secrete cytokines in
order to signal something to another cell. Then, a B-cell will be taken as a generic cell
Vi with two components expressed by:

Vi = (ci,Pi) (2)

Where:

143

Norma Montealegre, Franz J. Rammig

Cell

Cell
Cytokine

Receptor

Secretion of cytokines

Figure 8 Cytokines signal the cellular interaction. They are secreted by cells. They are recognized
by cell’s receptors

ci ∈ N represents a cytokine. Recovery action to be taken under presence of error.
Pi ∈ R

q = ((p1)i, ...,(pq)i) is a point in a q-dimensional space. P lies within a cube
max{| (p1)i |, ..., | (pq)i |} ≤ 1. It represents a protein transformed into the FIN
(Formal Immune Network) space. In biological terms it represents an antigen bind-
ing site of an antibody or simplifying an antibody. An array containing an input test
and its test response, all transformed to the FIN space is an antibody.

In Fig. 9, a two dimensional Formal Immune Network (2D-FIN) is presented. As
q = 2, each protein has two coordinates in the FIN space.

Figure 9 2D-FIN. Note that
q=2 and P represents an
antibody (protein) in the FIN
space

q = 1

q = 2

Pi

(p1)i

(p2)i

−1

−1

1

1

144

Immuno-repairing of FPGA designs

5.1 First stage training

Training consist in transforming a given energy matrix A into another antibody matrix
P. Matrix A is a composed of arrays of test inputs and its corresponding test response
outputs, see Fig. 4. Training is the process of mapping antibodies into the Formal
Immune Network space. n dimension training patterns are transformed to reduced di-
mension patterns (two or three). This takes place by means of Singular Value Decom-
position, restricting its terms of decomposition to two or three. Figure 10 introduces
the general concept. Singular values and the right singular vectors are used for the
calculation of the coordinates of each training pattern into the FIN space. Each point
will represent an antibody. In the figure, two outputs are displayed. First, the SVD:
singular values, right singular vectors and left singular vectors. Second, the matrix P
with the transformed patterns, where each pattern remains linked to its initial c value.
The output should be stored in order to be used in the later stages.

Figure 10 Training

V ∗(cm,Am×n)

SVD(A)

SVD(A)

k = 1, ...,q

i = 1, ...,m

V (cm,Pm×q)

(pk)i = 1
sk

A′
iRk

A can be written as a linear combination of pairwise orthogonal projections:

A = s1L1R′
1 + s2L2R′

2 + s3L3R′
3 + ...+ skLkR′

k + ...+ srLrR
′
r (3)

where:

r rank of the matrix A
Lk left singular vectors
Rk right singular vectors
sk singular values

Moreover, Lk is of dimension m and Rk of dimension r.
The minimal binding energy is achieved with the pair of proteins whose angles in

its spacial configuration form singular vectors. Those singular vectors correspond to
the maximal singular values of the matrix A. Singular vectors represent formal protein
probes and the singular values their binding energy. As the singular values are ordered
in a decreasing order, we can take the first two singular values and its corresponding
terms for a 2D-FIN and three terms for a 3D-FIN. In consequence every training vector
pattern of dimension n is mapped to only two (or three) values of binding energy in
the FIN space [16]. Afterwards, it is necessary to map the training vectors into the FIN
space (see Fig. 9) by means of:

145

Norma Montealegre, Franz J. Rammig

(pk)i =
1
sk

A′
iRk (4)

where i = 1, ...,m and k = 1, ...,q.

5.2 Second stage training

The affinity between two cells Vi and Vj, can be calculated by the distance di j given
by:

di j = max{| (p1)i − (p1) j |, ..., | (pq)i − (pq) j |} (5)

Initially given m cells with pairs cytokine-antibody Vi(ci,Pi), the aim is to reduce
similar cells killing one of two cells which distance is less than a given threshold. The
set of m cells belonging to the innate immunity can be represented by a W0 as shown
below:

W0 = {V1, ...,Vm} (6)

cFIN means cytokine Formal Immune Network. A cFIN is a set of cells W ⊆ W0.
In contrast with a FIN, it considers a second stage training or maturation, inspired in
the cytokines from the immune system. [14] introduces a two stage second training in
order to get a reduced set of cells, therefore improving the resource utilization and the
time applied in recognition in the future.

The first stage is apoptosis and it intends to reduce the set with the following rule:

If Vi ∈W recognizes Vk ∈W , then remove Vk from cFIN.

Note that recognition means:

ci = ck (7)

dik ≤ h (8)

Where h is a threshold of affinity.
The second stage is auto-immunization. It tries to recover accidentally removed

cells by the process of apoptosis.

The removed cell Vi nearest to a cell Vk from the set W will be inserted again if
ci �= ck.

Figure 11 shows graphically the sets and the general concept of the optimization
offered by cFIN.

146

Immuno-repairing of FPGA designs

Figure 11 Sets of cells
after Apoptosis and Auto-
immunization

W0 innate immunity

W after apoptosis

W after auto-immunization

5.3 Recognition

Figure 12 shows an antibody close to an antigen. When the distance between any
antibody and the antigen is less than a given threshold, recognition in the FIN space
is produced.

Figure 12 An antibody rec-
ognizes an antigen Z inside its
affinity threshold radio

Z

q = 1

q = 2

−1

−1

1

1

An antigen Z = [z1,z2, ...,zn] can be seen as an epitope, therefore as a protein, see
Fig. 7. An antigen represents the test response linked with its test input. In order to
be compared with the antibodies, it should be mapped to a point in the q-dimensional
FIN space by:

pk =
1
sk

Z′Rk (9)

147

Norma Montealegre, Franz J. Rammig

pk values should be mapped into the FIN space. See also Fig. 13.

Figure 13 Recognition

Antigen Z

class c

pk = 1
sk

Z′Rk k = 1, ...,q

Cell Vi recognizes antigen Z by assigning it a class ci, if the distance between
the antigen among all antibodies of the cFIN is d(Vi,P) = min{d(Vj,P)}, for all
Vj ∈ W . A test response will be matched with the expected output recognizing
whether there is an error or not and applying the determined action signaled by
ci.

For the distance calculation Eq. 5, the Euclidean norm is taken. Nevertheless, the
choice of the norm is determined by the appearance of the group of points in the FIN
space.

Relating the class c in Fig. 13, it is a numerical value which can also be taken as a
symbolic value like ”good”, ”bad”, ”reconfiguration”, etc.

6 Conclusion

Computation times for the training and recognition presented in [13], show that it is
feasible to expect a good performance of the model in hardware. Furthermore, the
reduced memory constraints obtained with the second training of the cFIN indicates
potential towards a distributed error detection and correction scheme. This paper is in-
tended to present a design idea. Currently, an implementation with commercial com-
ponents and the measure of performance is being carried out.

References

1. Al-Asaad, H., Shringi, M.: On-line built-in self-test for operational faults. In: AUTOTESTCON
Proceedings, 2000 IEEE, pp. 168–174. Springer-Verlag New York (2000)

2. Bradley, D., Ortega-Sanchez, C., Tyrrell, A.: Embryonics + immunotronics: A bio-inspired ap-
proach to fault tolerance. In: J. Lohn, A. Stoica, D. Keymeulen (eds.) The Second NASA/DoD
workshop on Evolvable Hardware, pp. 205–224. IEEE Computer Society, Palo Alto, California
(2000)

148

Immuno-repairing of FPGA designs

3. Bradley, D.W., Tyrrell, A.M.: Immunotronics: Hardware fault tolerance inspired by the immune
system. In: ICES, pp. 11–20 (2000)

4. Dutt, S., Verma, V., Suthar, V.: Built-in-self-test of fpgas with provable diagnosabilities and high
diagnostic coverage with application to online testing. In: Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 27, pp. 309–326. IEEE (2008)

5. Gupta, S.K., Pradhan, D.K.: Utilization of on-line (concurrent) checkers during built-in self-test
and vice versa. In: IEEE Transactions on Computers, vol. 45, pp. 63–73. IEEE Computer Society
Washington, DC, USA (1996)

6. Irion, A., Kiefer, G., Vranken, H., Wunderlich, H.J.: Circuit partitioning for efficient logic bist
synthesis. In: Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001.
Proceedings, pp. 86–91 (2001)

7. Kastensmidt, F.L., Carro, L., Reis, R.: Fault-Tolerance Techniques for SRAM-Based FPGAs,
Frontiers in Electronic Testing, vol. 32. Springer (2006)

8. Kumagai, J.: Swimming to europa. IEEE Spectrum 44(9) (2007)
9. Rammig, F.J.: Systematischer Entwurf digitaler Systeme. B. G. Teubner Sttutgart (1989)

10. Ratter, D.: Fpgas on mars. XCell journal 50 (2004)
11. Sterpone, L., Violante, M.: A design flow for protecting fpga-based systems against single event

upsets. In: Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE Interna-
tional Symposium on, pp. 436–444 (2005)

12. Stroud, C.E.: A Designer’s Guide to Built-in Self-Test. Springer (2002)
13. Tarakanov, A.O.: Formal Immune Networks: Self-Organization and Real-World Applications,

Advanced Information and Knowledge Processing, vol. Part III, pp. 271–290. Springer London
(2008)

14. Tarakanov, A.O., Goncharova, L.B., Tarakanov, O.A.: A cytokine formal immune network. In:
Advances in Artificial Life, Lecture Notes in Computer Science, vol. 3630. Springer Berlin /
Heidelberg (2005)

15. Tarakanov, A.O., Kvachev, S.V., Sukhorukov, A.V.: A formal immune network and its imple-
mentation for on-line intrusion detection. In: Computer Network Security, Lecture Notes in
Computer Science, vol. 3685, pp. 394–405. Springer Berlin / Heidelberg (2005)

16. Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing, Principles and Applica-
tions. Springer New York (2003)

17. Tempesti, G.: A self repairing multiplexer-based fpga inspired by biological processes. Ph.D.
thesis, École Polythechnique Fédérale de Lausanne (1998)

18. Tyrrell, A.: Computer know thy self!: A biological way to look at fault tolerance. In: 25th
Euromicro Conference (EUROMICRO ’99), vol. 2, pp. 21–29. 2nd Euromicro/IEEE Workshop
on Dependable Computing Systems (1999)

19. Wang, Z., Chakrabarty, K.: Built-in self-test and defect tolerance in molecular electronics-based
nanofabrics. In: Journal of Electronic Testing: Theory and Applications, vol. 23, pp. 145–161.
Kluwer Academic Publishers (2007)

20. Wunderlich, H.J.: Test and testable design. In: Architecture design and validation methods, pp.
141–190. Springer-Verlag New York (2000)

21. Xilinx Inc.: Xilinx TMRTool, The First Triple Module Redundancy Development Tool for Re-
configurable FPGAs. URL www.xilinx.com

149

Real-time Monitoring

Rainer Buchty, David Kramer, Wolfgang Karl

systems. In this paper we describe a novel approach to monitoring based on biologi-
cally inspired methods, which not only suits traditional requirements in generating a
detailed and pristine system state image, but also complies with the dedicated needs
of self-configuring systems. As a beneficial side-effect, the proposed monitoring
approach is inherently fault-tolerant and scalable with system size.

1 Introduction

Traditional use of monitoring techniques range from basic system introspection re-
quired for sanity checks or load balancing to detailed system traces used for applica-
tion and architecture optimization. Especially the latter requires detailed and pristine
recording of the system state to enable correlation of program code and monitored
effects, such as e.g. cache hits and misses.

For these topics, a plethora of techniques and tools has been developed such as
hardware counter registers triggering to individual events, profilers, or simulation
infrastructures. Each of these methods, however, comes with certain drawbacks.
Simulation is only as precise as the underlying simulation model, and typically sev-
eral magnitudes slower than execution on a real system. It does, however, provide

Universität Karlsruhe (TH)
Institut für Technische Informatik
76128 Karlsruhe, Germany
{buchty|kramer|karl}@ira.uka.de

Please use the following format when citing this chapter:

Buchty, R., Kramer, D. and Karl, W., 2008, in IFIP International Federation for Information Processing, Volume 268;
Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 151–162.

Keywords: Monitoring, Bio-inspired, Hormone System, Adaptive Computing,

tion, but also provides the fundamental functionality for adaptive and self-configuring
Abstract System monitoring is not only the key to system and application optimiza-

An Organic Computing Approach to Sustained

Self-X.

Rainer Buchty, David Kramer, Wolfgang Karl

the possibility of closest possible introspection and is able to deliver a pristine sys-
tem view, unaltered by monitoring side-effects.

Simulation is especially hampered by the problem of data size: even short pro-
gram runs of few milliseconds are able to generate several megabytes of monitoring
(trace) data at single-step resolution. Even at a far more coarse-grained monitoring
resolution, a program run will easily generate traces in the gigabyte range.

All approaches typically share the way how monitoring data is collected and
transported: collection is usually done using fixed, assigned counter registers which
are subsequently polled by a monitoring framework. Hence, in real systems, side
effects caused by monitoring occur such as interrupt triggering or data transport.
When analyzing trace data, these side effects have to be carefully taken into account.

1.1 Adaptive and Self-configuring Systems

Conventional optimization relies on trace generation, off-line analysis of the gener-
ated trace data, and manual or semi-automated optimization. For trace generation,
monitoring is solely based on pre-defined rules, i.e. the programmer defines upfront
which events need to be generated or traced.

This is in contrast to adaptive, self-configuring systems: here, only a start con-
figuration can be provided and it is unknown whether this will suit future system
configurations or generate a sufficient amount of monitoring data to enable proper
reaction to events. Furthermore, monitoring data must not be collected for off-line
introspection, but rather be analyzed and evaluated on-line, adhering to application-
and system-defined real-time constraints.

Hence, adaptive systems consist of a closed control loop as illustrated by Figure
1: using monitoring components, the system’s current state is derived and evalu-
ated against a destination state defined by so-called objective functions. Using these
functions and the adaptive capabilities of the system provided by adaptive compo-
nents, a refined system configuration is derived and a reconfiguration performed
here-on.

Fig. 1 Adaptive System: Control Loop

152

An Organic Computing Approach to Sustained Real-time Monitoring

Fig. 2 Adaptive System: Architecture Fig. 3 Adaptive System: Objective Functions

Objective functions, however, are usually contradictory. Power vs. performance
may serve as an example: almost all dynamically applicable methods to lower power
consumption will also decrease performance – and vice versa. Hence, data must be
collected and evaluated in real-time to ensure that application demands, as defined
through the provided objective functions, are met.

As said before, this entire process is unlike conventional, narrowly focused op-
timization of e.g. data locality, where only limited information needs to be gath-
ered and correlated, and where correlation and optimization are typically done off-
line. Instead, an approach not hampered by a fixed corset of pre-defined events and
rules is required which instead is tailored towards the needs of adaptive and self-
configuring systems.

1.2 Outline

In this paper, we therefore propose a novel monitoring system approach. This ap-
proach employs a uniform, flexible method of associative counter registers, subse-
quently enabling real-time analysis of monitoring data, and minimizing side-effects
caused by monitoring data transfer. The approach does not require up-front defi-
nition of monitoring rules; instead, a bio-inspired method is used, enabling fault-
tolerant event generation, distribution, and evaluation. Therefore, within the scope
of an adaptive system, also monitoring itself becomes adaptive and – as a beneficial
side-effect of the used method, – easily scalable with system size.

This paper is organized as follows: we will first give an introduction to the spe-
cific set-up and needs of adaptive, self-configuring systems illustrated by a novel-
bio-inspired architecture. We then discuss existing monitoring approaches and their
suitability with respect to real-time capabilities, system influence, and use within
adaptive, self-configuring systems, followed by detailed presentation of our moni-
toring approach, its prototype implementation and results. The paper is closed with
the conclusion and outlook.

153

Rainer Buchty, David Kramer, Wolfgang Karl

2 Related Work

Trace generation for optimization purposes and feedback systems as required for
self-configuring, adaptive systems require techniques to gather and process system
parameters to be able to create a certain sense of self-awareness. These parameters
can be collected on various system levels such as lowest hardware level, driver level,
OS level, or application level.

On lowest hardware level, performance counters offer some rudimentary mon-
itoring support. They are typically used to profile an application and investigate
possible application optimizations, such as enhanced data layout in memory to im-
prove cache use. Modern processor architectures offer so-called event or perfor-
mance counter registers [2, 6, 11, 12, 18, 10, 17]. Number and use of these registers
are dependent on the individual architecture: counter registers are either bound to
certain events or can be more or less freely assigned [17, 11]. The majority of exist-
ing analysis tools is based on these counter registers.

Counter-based methods typically suffer from four basic limitations [21] which
are number of registers, sampling delay, and lack of address profiling. Furthermore,
it is not possible to differentiate between events being triggered by speculative and
non-speculative execution. False counts from speculation are addressed with the
precise event-based sampling (PEBS) of Intel’s Pentium 4 architecture [12, 20].
The drawback of this method, however, is increased chip size and influencing the
normal system behavior resulting from concurrent regular memory accesses of the
currently running program. Similar, but less complex methods are implemented in
the IBM’s Power architecture [18, 10].

It is a general problem of sampling methods described above, that only system
snap-shots are created. Thus, these methods serve only for creation of aggregated
statistics. It is usually not possible to selectively pre-compute monitored data al-
ready on the monitoring tier, leading to impact resulting from reading and post-
processing the counter registers.

While counter registers are well-suited for processor audit, they are not sufficient
for flexible, system-wide, and generic monitoring concepts as required for auto-
nomic computing systems. They are fixed and furthermore lack the possibility of
pre-processing.

For architectures without such hardware support, monitoring can be achieved us-
ing plain software based on profilers inserting function prologues to collect statisti-
cal information such as gprof [7]. It is also possible to embed monitoring routines
on driver level as demonstrated by the Myrinet-based Shrimp Cluster [13]. A com-
bined hardware/software method was used on the SMiLE monitor for SCI networks
[8].

To configure the monitoring system and extract and process monitoring data,
higher-level monitoring APIs may be used such as [19], [3], or [14, 15]. Task of
these APIs is to decouple monitoring devices from post-processing software by of-
fering an abstract programming interface rather than directly accessing the monitor-
ing hardware.

154

An Organic Computing Approach to Sustained Real-time Monitoring

From the above examples several conclusions can be drawn: Existing infrastruc-
tures in hardware are fixed. While suitable for their designed task, monitoring in-
frastructures are too limited for generic use within a self-optimizing system. It is
not possible to replace or adapt existing resources. We address this topic by using
associative counter arrays instead of fixed event counters as outlined in Section 4.1.

Monitoring systems are application-specific. Powerful monitoring tools exist
for various applications, attaching monitoring techniques to various system lay-
ers. What is missing, though, is generic support for plugging dedicated monitoring
devices into the running system as required. Ideally, monitoring modules can be
applied to all system layers through a defined and standardized interface. This is ad-
dressed by a uniform event specification as outlined in Section 4.2, enabling unique
event identification where this identification also includes where and how an event
was generated.

No standardized API exists. So far, several approaches for monitoring APIs exist,
However, these are typically bound to certain applications. No uniform, application-
independent, and standardized monitoring API being able to report existing moni-
toring resources, permitting to access these resources, and – with respect to self-
organizing systems – enabling reconfiguration exists. We account for this by using
bio-inspired mechanisms for event evaluation also discussed in Section 4.2.

3 DodOrg: A Self-configuring Bio-inspired Architecture

For upcoming dynamically changing and self-adjusting systems the conventional
method of monitor-data processing is not suitable anymore. Such systems inter-
nally feature not one single observer/controller architecture, instead a multitude of
individual control loops may coexist creating a hierarchy of de-central, decoupled
control loops.

We want to illustrate this with the Digital on-demand Computing Organism for
Real-time Systems (DodOrg) [4], a novel computer architecture inspired by biology.

Like biological organisms, DodOrg is hierarchically structured: its hardware is
provided by so-called organic processing cells (OPCs). The OPCs provide different
capabilities ranging from general-purpose processing to DSP and reconfigurable
FPGA blocks, memories, and dedicated I/O cells. All cells are arranged in a grid
featuring peer-to-peer connection of the cells.

Mapping an application’s task to these cells follows the idea of organ formation
in biological organisms: individual OPCs are grouped into work clusters, or organs,
using a de-central hormone-inspired middleware. This grouping is based on an in-
dividual cell’s suitability for application tasks, i.e. its architecture (CPU vs. DSP vs.
FPGA), computing power, already assigned work load, and energy demands such
as provided vs. required energy.

This is akin to biological organisms where the concentration level of hormones is
measured. If a certain threshold is reached, some action is triggered such as e.g. ris-
ing blood pressure and heart beat rate. It is also possible, that based on the threshold

155

Rainer Buchty, David Kramer, Wolfgang Karl

levels of one or more individual hormones a so-called second messenger, i.e. a new,
derived event type, is generated.

Any organic architecture therefore requires a comprehensive, flexible, and adap-
tive monitoring approach, hence system monitoring is the important issue with self-
organizing systems. In particular, the entire system must be constantly evaluated,
therefore monitoring within DodOrg spans all system levels, i.e. individual moni-
tors are distributed across the system and are connected to different components and
layers.

4 The Monitoring Approach

As can be seen from the previous discussion, monitoring faces several challenges:
upcoming systems not only demand a high degree of flexibility with respect to event
detection and accumulation, but also require real-time correlation and interpretation
of such data. Since the system itself might constantly change, no infrastructure rely-
ing on pre-defined events and monitor rules is able to provide necessary adaptivity.

We therefore propose two basic mechanisms for next-generation monitoring in-
frastructures suitable for both, scalable systems and dynamically, self-adapting sys-
tems: the limitation of monitoring resources we address by using so-called associa-
tive counters triggering to arbitrary events instead of being hard-wired to a small
pre-selection of individual events. This obviously requires self-identifying event
coding.

In Section 4.1, we therefore show our proposed encoding scheme, the associative
counter design, and beneficial side effects resulting from this approach.

Subsequently, in Section 4.2, we show how this unique event coding matches the
biological model of hormones or messengers and how derived mechanisms over-
come the necessity for pre-defined monitoring rules, resulting in an inherently flex-
ible and adaptive nature of monitoring data evaluation.

4.1 Associative Counter Arrays

So-called performance counters enable real-time monitoring of event data without
requiring to trigger an external monitoring instance with every event occurrence.
Instead, a certain amount of events is counted and later an accumulated number is
forwarded to a memory buffer where it then can be processed by a higher monitoring
instance, e.g. for correlation or visualization.

In contrast to conventional systems, where both, counter size and event associ-
ation are typically fixed, our monitoring approach features the use of associative
counter arrays. Hence, no hard-wired connection between one or more predefined
events and a single counter exists; instead, the counters are self-triggering to any
event. Introducing a programmable modulo – potentially useful for more infrequent

156

An Organic Computing Approach to Sustained Real-time Monitoring

or rare events – enables control of the counter overflow, aiding histogram generation
for higher-level monitoring.

Figure 4 illustrates the general construction and work principle: upon event oc-
currence, the event is caught by the counter array and assigned to the first spare,
i.e. unassigned, counter. Subsequent occurrences of this very event will trigger the
assigned counter. If no spare counter is available, an assigned counter will be re-
assigned: in this case, the existing counter value and the event identification are
evicted from the counter array, and the referring counter is initialized and assigned
to the new event.

Fig. 4 Associative Counter Array: Principle of
Operation

Fig. 5 Unique Event ID Construction

From this explanation it becomes obvious that the associative counter array is
a cache memory by nature where the event ID becomes the cache tag and the the
event-associated counter resembles the cached data. Hence, likewise replacement
strategies including, but not limited to, FIFO, LRU, and LFU approaches.

To make this concept work, a unique and self-defining encoding of system events
as shown in Figure 5 is required. This encoding consists of two parts, a local part
denoting the event itself (i.e. a memory access) and associated data (the address and
read/write flag), and an additional part containing the source of this event, i.e. which
CPU performed this operation.

In the following, we will show that such a unique event tag does not only ease
event monitoring using associative counter arrays, but also correlation and evalua-
tion of such event monitor data.

4.2 Biologically nspired Event Communication and Evaluation:
The Hormone Concept

Associative counter arrays already provide sufficient flexibility for event detection;
in addition to that, also a flexible method of event correlation is required, including
the possibility of focus adjustment, i.e. changing the event granularity or “monitor-
ing resolution”.

157

I

Rainer Buchty, David Kramer, Wolfgang Karl

A suitable technique can, again, be found in biological organisms: here, certain
events are communicated using so-called messengers, or hormones. The amount of
messengers – i.e. events – generated is solely defined by its respective producers,
i.e. no central instance commands generation of events, neither does a central in-
stance command event encoding.

In biological organisms, the concentration level of hormones is measured. If a
certain threshold is reached, some action is triggered, such as e.g. rising blood pres-
sure and heart beat rate. It is also possible that based on the threshold levels of
one or more individual hormones a so-called second messenger, i.e. a new, derived
event type, is generated. Messengers are inherently self-defining by their chemical
structure; hence, using an encoding mechanism and a method of accumulation as
described in Section 4.1, both, hormone concept in general, and concentration trig-
gering in particular can be directly applied to digital systems as illustrated by Figure
6.

Fig. 6 Hormone Reception, Processing, and
Second Messenger Principle

Fig. 7 Mask-based Event ID Evaluation

In such a system, whether to react or not to one or more hormones is solely de-
cided by the receiver. With the absence of central instances therefore the the overall
system becomes very flexible and scalable. Further amount of flexibility is intro-
duced by not using event IDs directly, but to apply a simple identification mask and
therefore be able to narrow and widen the focus of event accumulation: with this
mask, mandatory and “don’t care”-fields of the event ID are specified. This mask
is then applied to incoming event IDs (using a simple Boolean function). In case
of a match, either a counter may be triggered or, mimicking the so-called second-

158

An Organic Computing Approach to Sustained Real-time Monitoring

messenger principle, a new event may be sent into the system. Figure 7 shows such
an evaluation process.

Since only the interpretation of already generated monitoring data is changed,
different monitoring instances might coexist, each interpreting the present monitor-
ing data differently.

The drawback of such an approach is a potentially high communication load im-
posed by transportation of monitoring data. However, [1] showed that for typical
setups the amount of monitoring data can be easily transported in modern commu-
nication infrastructures, including networks on chips (NoCs).

5 Prototype Implementation and Results

To fully elaborate the concept, we developed two prototypes: a software prototype
is used to demonstrate the suitability of the overall concept, and serves also as a
case study for using the proposed concept to enhance an existing communication
infrastructure.

In addition, we developed a hardware prototype aimed at monitoring traffic in
contemporary high-performance bus-systems employed in current and future multi-
core systems for core interconnection.

Our software prototype targets a sub-problem of distributed and heterogeneous
architectures such as DodOrg: in such architectures, memory allocation, access, and
access right management becomes crucial. Hence, we developed the concept of so-
called Self-aware Memory [5], providing a more intelligent, scalable, and de-central
memory management suitable for highly heterogeneous parallel systems with spe-
cial focus on dynamic, adaptive systems.

Communication within SaM is based on a lightweight, hormone-inspired proto-
col, where each memory access (allocation request, grant, and read/write access) is
therefore encoded as a unique event.

The monitoring approach proposed in this paper was applied to an existing SaM
simulation environment [16] where it will be used as the information-gathering en-
tity required for monitoring and correlating memory accesses to steer autonomous
defragmentation, locality optimization, and brokering. This environment basically
consists of a number of CPUs and memory banks connected through a shared inter-
connection network.

As a first step towards full self-management, we therefore extended the existing
simulation infrastructure to provide associative counter arrays in each component
to be able to detect incoming and outgoing accesses for each component, hence,
monitoring individual commands to record typical request/response behavior taking
place within the SaM protocol.

The setup was verified using a basic functionality test. For this test, we monitored
randomly generated memory accesses, proving the functionality of our monitoring
approach. This monitor was then subsequently used for further development of the

159

Rainer Buchty, David Kramer, Wolfgang Karl

SaM memory allocation protocol, where we successfully verified and measured the
behavior of the protocol additions and alterations.

With this setup, we were easily able to introduce and verify a new, more efficient
allocation mechanism replacing the formerly used strategy by simply triggering to
the individual access messengers (i.e. event IDs of individual accesses); while cer-
tainly overkill for just protocol optimization, the software prototype is, however,
the initial and vital step to explore self-management, leading to fully autonomous
self-optimization as required within the SaM context.

We also developed a hardware prototype to prove that our approach is suitable
for high-performance communication technologies required for on-chip multicore
connectivity as e.g. employed within DodOrg, and give a first estimation of the as-
sociated hardware costs. We therefore chose HyperTransport [9] as a state-of-the-art
interconnection system, using an existing interface core [22], which was extended
by an associative counter array to monitor memory accesses from CPU to memory.
The array consists of 64 individual 8-bit counters with a tag size of 40 bits.

Targeting a Xilinx Virtex4FX100, this monitor accounts for about 4% of logic
use (slices), mostly holding the access logic, and 6% of on-chip memory storage
(RAMB16) for the associative counter array; compared to the original, unaltered
core the monitor-equipped core shows an increase of 36% in logic and 33% in mem-
ory.

6 Conclusion

In this paper we presented a novel approach to sustained real-time monitoring. The
approach not only introduces increased flexibility, but also addresses the specific
topic of dynamically changing and self-adapting systems.

The approach employs associative counter arrays, introducing the flexibility re-
quired for such systems as counters are no longer bound a single event or predefined
small group of events. Doing so requires the introduction of unique event IDs so that
events are inherently self-defining. Applying a simple match mask enables scaling
of the monitoring resolution so that counters may react to individual events or con-
figurable groups of events, such as e.g. events coming from a distinct source or
memory accesses with configurable address granularity.

This concept is biologically inspired and based on the hormone concept where
solely the designated receiver decides whether to receive and how to react to hor-
mones. No centralized monitoring instance exists, instead a distributed systems of
producers (cells emitting hormones) and receivers (cells receiving hormones) exist.
Hence, the entire system is inherently scalable and fail-safe.

To evaluate the concept, we extended a simulation infrastructure where we ap-
plied this style of monitoring. It required very little programming work and proved
very successful in the process of expanding, optimizing, and verifying a communi-
cation protocol for de-central memory management and access.

160

An Organic Computing Approach to Sustained Real-time Monitoring

We furthermore developed a hardware prototype to demonstrate the general suit-
ability for high-performance real-time systems, and evaluated the hardware require-
ments such as chip area and ease of integration into existing hardware infrastruc-
tures.

By the outcome of this work we are convinced that the proposed method does
provide the necessary flexibility and ease of use as required for dynamical and
adaptive systems. We were able to show the required real-time capabilities, and
the hardware requirements proved to be modest so that they can be easily integrated
in existing interface structures such as the used HTX core.

We will therefore further pursue this work and not only refine the unique event
identifier scheme and optimize our existing prototypes, but also be soon able to
test our concept against real-world examples, running dedicated benchmark suites.
Doing so will generate more universal results with respect to hardware requirements
and communication overhead.

7 Acknowledgements

The software and hardware prototypes were implemented by Luis Mariano Guerra
(software) and Bastian Molkenthin (hardware) as part of their semester projects.

References

1. Uwe Brinkschulte Alexander von Renteln. Reliablity of an Artificial Hormone System with
Self-X Properties. In Parallel and Distributed Computing and Systems, Cambridge, Mas-
sachusetts, USA, November 19-21 2007.

2. AMD. AMD Athlon processor, x86 Code Optimization Guide. 2002.
3. J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-T.A. Leung, R.L. Sites,

M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous profiling: Where have all
the cycles gone? In Proceedings of the 16th ACM Symposium on Operating Systems Princi-
ples, Oct 1997.

4. Jürgen Becker, Kurt Brändle, Uwe Brinkschulte, Jörg Henkel, Wolfgang Karl, Thorsten
Köster, Michael Wenz, and Heinz Wörn. Digital On-Demand Computing Organism for
Real-Time Systems. In Wolfgang Karl, Jürgen Becker, Karl-Erwin Großpietsch, Christian
Hochberger, and Erik Maehle, editors, Workshop Proceedings of the 19th International Con-
ference on Architecture of Computing Systems (ARCS’06), volume P81 of GI-Edition Lcture
Notes in Informatics (LNI), pages 230–245, March 2006.

5. Rainer Buchty, Oliver Mattes, and Wolfgang Karl. Self-aware Memory: Managing Distributed
Memory in an Autonomous Multi-Master Environment. In The 2008 International Confer-
ence on Architecture of Computing Systems (ARCS 2008), Dresden, Germany, February 25-28
2008.

6. Compaq Computer. Alpha 21264 Microprocessor Hardware Reference Manual.
7. J. Fenlason and R. Stallman. GNU gprof: The GNU Profiler. 1997.
8. Robert Hockauf, Wolfgang Karl, Markus Leberecht, Michael Oberhuber, and Michael Wagner.

Exploiting Spatial and Temporal Locality of Accesses: A New Hardware-Based Monitoring
Approach for DSM Systems. In David Pritchard and Jeff Reeve, editors, Euro-Par’98 Parallel

161

Rainer Buchty, David Kramer, Wolfgang Karl

Processing, 4th International Euro-Par Conference, Southampton, UK, September 1-4, 1998
Proceedings, volume 1470 of Lecture Notes in Computer Science, Berlin, September 1998.
Springer Verlag.

9. HyperTransport Consortium. HyperTransport: Low latency Chip-to-Chip and beyond Inter-
connect. http://www.hypertransport.org.

10. IBM. PowerPC 740/PowerPC 750 RISC Microprocessor User’s Manual. 1999.
11. Intel. Intel Itanium Architecture Software Developer’s Manual. 2000.
12. Intel. Intel Architecture Software Developer’s Manual Volume 3: System programming Guide.

2002.
13. C. Liao, M. Martonosi, and D.W. Clark. Performance monitoring in a myrinet-connected

shrimp cluster. In Proceedings of the International Conference on Measurement and Modeling
of Computer Systems (Sigmetrics’98), Aug 1998.

14. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS – On-line Monitoring Interface
Specification (Version 2.0). Shaker Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-7.

15. Thomas Ludwig and Roland Wismüller. OMIS 2.0 — A Universal Interface for Monitoring
Systems. In M. Bubak, J. Dongarra, and J. Wasniewski, editors, Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 1332 of Lecture Notes in Computer
Science, pages 267–276, November 1997.

16. Oliver Mattes. Developing a decentral memory management for distributed systems (self-
aware memory). Master’s thesis, Universität Karlsruhe (TH), 2007.

17. Sun Microsystems. Ultra-SPARC IIi User’s Manual. 1997.
18. Motorola. MPC7450 RISC Microprocessor Familiy User’s Manual. 2001.
19. P.J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface to hardware perfor-

mance counters. In Proceedings of the Department of Depense HPCMP User Group Confer-
ence, Jun 1999.

20. B. Sprunt. Pentium 4 performance-monitoring features. In IEEE Micro, pages 72–82, Jul/Aug
2002.

21. B. Sprunt. The basics of performance-monitoring hardware. In IEEE Micro, pages 64–71,
Jul/Aug 2002.

22. Ulrich Brüning et al. HTX Board Universal Reference Design. http://www.
hypertransport.org/products/productdetail.cfm?RecordID=75.

162

David Gilbert, Monika Heiner, Susan Rosser, Rachael Fulton, Xu Gu and Maciej
Trybiło

Abstract We report on a case study in synthetic biology, demonstrating the model-
driven design of a self-powering electrochemical biosensor. An essential result of
the design process is a general template of a biosensor, which can be instantiated
to be adapted to specific pollutants. This template represents a gene expression net-
work extended by metabolic activity. We illustrate the model-based analysis of this
template using qualitative, stochastic and continuous Petri nets and related analysis
techniques, contributing to a reliable and robust design.

1 Motivation

One of the greatest challenges in modern bioscience is arguably the development
of techniques for the engineering of living systems in a rigorous manner. This is
the domain of the emerging discipline of “Synthetic Biology” [HP06], which can
be defined as the design and construction of new biological parts, devices, and sys-
tems, as well as the re-design of existing natural biological systems for useful pur-
poses [Syn08]. One aspect of Synthetic Biology which distinguishes it from conven-
tional genetic engineering is a heavy emphasis on the development of foundational
technologies that make the engineering of biology easier and more reliable.

David Gilbert, Rachael Fulton, Xu Gu, Maciej Trybiło
Bioinformatics Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, UK,
e-mail: drg@brc.dcs.gla.ac.uk, 0307842f@student.gla.ac.uk, gux@brc.dcs.gla.ac.uk,
trybilom@dcs.gla.ac.uk

Monika Heiner
Department of Computer Science, Brandenburg University of Technology, Postbox 10 13 44,
03013 Cottbus, Germany, e-mail: monika.heiner@tu-cottbus.de

Susan Rosser
Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK,
e-mail: s.rosser@bio.gla.ac.uk

Please use the following format when citing this chapter:
Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X. and Trybilo, M., 2008, in IFIP International Federation for Information
Processing, Volume 268; Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig,
Hartmut Schmeck; (Boston: Springer), pp. 163–175.

A Case Study in Model-driven Synthetic Biology

Gilbert, Heiner, Rosser, Fulton, Gu, Trybiło

We report on a case study in synthetic biology [Gla07], demonstrating the model-
driven construction of a completely novel type of self-powering electrochemical
biosensor, called ElectrEcoBlu. The novelty lies in the fact that the response signal
is an electrochemical mediator which enables electrical current to be generated in a
microbial fuel cell. ElectrEcoBlu functions as a biosensor for a range of important
and widespread environmental organic pollutants which stimulate the biosensor to
produce its own electrical power output. The system has the potential to be used for
self-powered long term in situ and online monitoring with an electrical readout.

Our approach exploits a range of state-of-the art modelling techniques [GHL07]
to guide the design and construction of this novel synthetic biological system in
order to ensure that its behaviour is reliable and robust under a variety of con-
ditions. This was facilitated by the entire team - molecular biologists and engi-
neers/modellers - working in an integrated laboratory environment, using Petri nets
as a communication means and following an iterative construction process as given
in Fig. 1. An essential result of the design process is a general template of a biosen-
sor, which can be instantiated to be adapted to special pollutants. This template
represents a gene expression network extended by metabolic activity. We demon-
strate the model-based analysis of this template, and by this way of the design of the
biosensor, using qualitative, stochastic and continuous Petri nets and related analysis
techniques.

Fig. 1 Model-driven syn-
thetic biology. Computer
modelling and analysis guides
the design and construction
in order to ensure behaviour,
which is reliable and robust
under a variety of conditions.

biosystem
synthetic

observed
behaviour

predicted
behaviour

model
(blueprint)

desired
behaviour

design construction

verification verification

2 Biochemical Context

Public concern and legislation are demanding better environmental control and mon-
itoring of pollutants. Biosensors are being developed in the fields of environment,
bioprocess control, food, agriculture, military, and medical industries. Biosensor
sensitivity and selectivity depend essentially on the properties of the biorecognition
elements to be used for analyte binding.

The discovery of transcriptional activators and their corresponding promoter se-
quences has made possible the development of bacterial biosensors for pollutants.
Modified cell biosensors are constructed by fusing a reporter gene (an enzyme or a
fluorescent protein e.g. GFP) to a promoter element that is induced by the presence
of a target compound. In the presence of an organic contaminant the transcriptional

164

A Case Study in Model-driven Synthetic Biology

activator changes its three dimensional structure, becoming operative, and transcrip-
tion of the reporter gene is enhanced. The gene is transcribed to form mRNA which
is then translated into a protein which performs the biochemical activity (in the case
of enzymes) or fluoresces (e.g. GFP). The resulting increase in reporter gene product
is then detected by measuring the activity of the reporter enzyme or the fluorescence
of the reporter protein. Thus, under appropriate conditions, a direct correlation be-
tween contaminant concentration and reporter product can be established.

One holy grail of environmental biosensors is to create a system which can be left
in the field continuously monitoring and remotely sending electronic signals back
to a computer. One major problem is how to power such a device so that frequent
expensive battery changes are not necessary. One possible source of renewable en-
ergy for powering biosensor devices are microbial fuel cells (MFC) in which micro-
organisms oxidize compounds such as glucose, acetate or wastewater. The electrons
gained from this oxidation are transferred to an electrode. In the past, external, ex-
pensive, soluble redox mediators have consistently been added to MFCs to enhance
electron transfer. Pseudomonas aeruginosa has been shown to produce its own elec-
tron transporters, pyocyanin (PYO), which can function as electron-carrying redox
mediators increasing electrical power output of MFCs.

Our project aimed to use a synthetic biology approach to combine the production
of an environmental biosensor for economically important industrial environmen-
tal pollutants with a microbial fuel cell which can produce its own electricity. The
intention is that the cells will recognise the presence of a pollutant via a modu-
lar interchangeable range of pollutant-specific transcriptional activator proteins and
enhance electricity generation in a microbial fuel cell by inducing genes for the
synthesis of the electron mediator PYO which function as novel reporter genes.

The recognition element of the designed biosensor system is a pollutant respon-
sive transcriptional activator XylR (DntR) which binds the important environmental
pollutant toluene (salicylate). The reporter element of the biosensor consists of the
enzymes S-adenosylmethionine-dependent N-methyltransferase (PhzM) and flavin-
dependent hydroxylase (PhzS) which convert the precursor compound phenazine-1-
carboxamide (PCA) to PYO in the biosynthetic pathway cloned from Pseudomonas
aeruginosa into E. coli and a non-pathogenic Pseudomonad strain.

The molecular biologists of our team constructed an initial diagram to describe
the system, using a fairly informal graphical syntax, see Figure 2. The generic form
of the transcription factor (‘tf’ for the gene, and ‘TF’ for the protein product) rep-
resents both XylR (toluene detecting) and DntR (salicylate detecting). In outline,
essential steps that we used to develop and refine our model are:

1. Simplification by abstracting away the mRNA, thus combining transcription and
translation.

2. Summarizing pollutant-specific transcriptional activator proteins under the term
TF.

3. Combining the PhzM and PhzS components to give one step from PCA to PYO.
4. Developing a variant of the model with a positive feedback loop (pfb).

165

Gilbert, Heiner, Rosser, Fulton, Gu, Trybiło

By doing so, we obtain a gene expression network, extended by metabolic ac-
tivity, i.e. the model combines different abstraction levels: gene activity as well as
metabolic activity, in the style of [vHNM+00]. This represents deliberately a min-
imal model concentrating on the most essential facts necessary to investigate the
system’s signal/response behaviour. To be able to analyse the system before hav-
ing constructed it, we are going to apply formal modelling techniques allowing the
computer-based evaluation of the system under construction.

Fig. 2 The general biosensor
scheme in two versions: with-
out/with the positive feedback
(pfb). Thick arrows represent
protein coding genes, thin
right-angle arrows represent
promotors optionally labelled
with the transcription factor,
and thin straight arrows rep-
resent biochemical reactions.
Note that the first instance of
the ‘tf’ protein coding gene is
constitutively expressed.

3 Framework

We have used a framework [GHL07] which integrates the qualitative, stochastic
and continuous paradigms, as a basis for our overall approach to modelling and
analysing the biosynthetic pathways, compare Fig. 3. Each perspective adds its con-
tribution to the understanding of the system, thus the three approaches do not com-
pete, but complement each other.

In summary, the qualitative time-free description is the most basic one, with dis-
crete values representing numbers of molecules or levels of concentrations. The
qualitative description abstracts over two timed, quantitative models. In the stochas-
tic description, discrete values for the amounts of species are retained, but a stochas-
tic rate is associated with each reaction. The continuous description models amounts
of species using continuous values and associates a deterministic rate with each re-
action, which now occurs continuously. These two time-dependent models can be
mutually approximated by propensity (hazard) functions belonging to the stochastic
world; see [GHL07] for more details.

This framework can be applied to a variety of formalisms; we specify stochastic
models by stochastic Petri nets defining reaction rate equations (RREs), and con-
tinuous models by continuous Petri nets defining ordinary differential equations
(ODEs). In the following we assume basic knowledge in the standard Petri net termi-
nology; see e.g. [BK02, DA05, MBC+95] for introduction and related definitions.

166

A Case Study in Model-driven Synthetic Biology

Qualitative

Stochastic Continuous
Ab

str
ac

tio
n

Approximation

Molecules/Levels
Qualitative Petri nets

Molecules/Levels
Stochastic rates

Stochastic Petri nets
RREs

Concentrations
Deterministic rates
Continuous Petri nets
ODEs

Abstraction
Approximation

Discrete State Space Continuous State Space

Time-free

Timed,
Quantitative

Fig. 3 Conceptual framework of our computational methods.

4 Qualitative Approach

Modelling From the graphical representation of the system given in Figure 2 and
its accompanying explanations we derive a qualitative Petri net describing a general
kernel biosensor template, and also one possible extension with pfb, see Figure 4.
This template and the pfb variant may be instantiated according to Table 1, creating
dedicated biosensors for different pollutants. Other variants are possible, including
switches and clamps, which we do not discuss here for lack of space.

The Petri net represents an extended gene expression network comprising transi-
tions of various abstraction levels:

• gene expression: TF expression, reporter expression;
• association/deassociation: TFS association, TFS deassociation;
• enzymatic reaction: response production;
• degradation: TF/TFS/reporter/response degradation.

The transition T F expression is an input transition (transition without preplaces),
modelling a constitutively expressed transcription factor, i.e. a gene which is con-
stantly active. The degradation transitions are output transitions (transitions without
postplaces). They model the fact that species naturally degrade, i.e. their concentra-
tion diminishes if they are not produced continuously.

The two essential components of a biosensor are easily identified: the recognition
element (upper part), and the reporter element (lower part), both coupled by the TFS
complex. In the recognition element, the signal (pollutant) forms a complex (TFS)
with a constitutively expressed transcription factor (TF). The TFS complex may
accelerate the TF expression, thus facilitating faster TFS association; in this case
we get a pfb. In the reporter element, the two read arcs (having a black dot as arrow
head) reflect the signalling cascade: TFS → reporter → response. In the following
we analyse the template, and by this way all its instances.

167

Gilbert, Heiner, Rosser, Fulton, Gu, Trybiło

signal

response

reporter

TF

TFS

precursor

pfb 1'

TFS degradation5

reporter degradation7

response degradation9

response production

8

reporter expression

6

TF degradation

2

TF expression

1

TFS deassociation

4

TFS association

3

ORD PUR HOM NBM CSV SCF CON SC FT0 TF0 FP0 PF0 NC
Y N Y Y N N Y N Y Y N N ES
DTP CPI CTI SCTI SB k-b 1-b DCF DSt DTr LIV REV
Y N Y N N N N - N N Y -

Fig. 4 Qualitative Petri net(s) of the biosensor template. The kernel system is given with white
transitions, and the positive feedback (pfb) variant has an additional transition indicated in grey.
The place given in black models the precursor, which is assumed to be available in sufficiently
large amounts; hence it is neglected in the model analyses. The two-lines result vector given at the
bottom summarizes the main qualitative analysis results; see [HGGH07] for more details.

Table 1 Possible instantiations for the places in the biosensor template.

place instances

signal toluene, salicylate
TF XylR, DntR
TFS XylR|S, DntR|S
reporter PhzMS as combination of PhzM and PhzS
precursor phenazine-1-carboxamide (PCA)
response pyocyanin (PYO)

Analysis Having established initial confidence in the model behaviour by playing
the token game, both systems were formally analysed. We list here the most essential
analysis results only. For a summary see the two-lines result vector given at the
bottom of Figure 4, for more explanatory details see [HGGH07].

The Petri net has input transitions and output transitions, i.e. it is an open sys-
tem. Input transitions are always enabled, therefore they are able to fire arbitrarily
often, making the Petri net unbounded. Consequently, the Petri net is not covered
by P-invariants (CPI). Actually, there is only one minimal P-invariant, which com-
prises merely the place signal. That means that the token number on this place never
changes under any firing, reflecting the model assumption that the signal (pollutant)

168

A Case Study in Model-driven Synthetic Biology

is constantly there at a strength as chosen by the initial marking. Therefore, this
place requires at least one token in the initial marking to allow its posttransition to
fire. On the contrary, all other places - empty in the initial marking - are unbounded,
i.e. the token number may rise to infinity if we consider the model under any tim-
ing behaviour. The proof of boundedness under given timing constraints, as e.g. by
determining a steady state, is left to the quantitative analyses, see Section 5.

Having the initial marking, we consider liveness. The Petri net is ordinary, i.e. all
arc weights are equal to 1, and the net belongs to the structural net class Extended
Simple (ES). The Petri net with the given initial marking has the deadlock trap
property (DTP). The DTP involves liveness for ordinary ES nets. Because the net is
live, there are no dead transitions and no dead states. That basically means that all
reactions will take place forever. Because the net is ES, the liveness is guaranteed
for any timing constraints.

We compute the T-invariants to get the subprocesses, from which the whole in-
finite system behaviour is comprised. The Petri net without pfb is covered by the
following minimal T-invariants (CTI), all enjoying an obvious biological meaning:

y1 = {T F expression,T F degradation},
y2 = {T F expression,T FS association,T FS degradation},
y3 = {T FS association,T FS deassociation},
y4 = {reporter expression,reporter degradation},
y5 = {response production,response degradation} .

The Petri net with pfb has additionally the following two T-invariants (the counter-
parts to y1, y2, replacing T F expression by p f b):

y6 = {p f b,T F degradation},
y7 = {p f b,T FS association,T FS degradation}.
One of the benefits of using the qualitative approach at this early stage of system

design was that the systems could be modelled and analysed without any quanti-
tative parameters. Moreover the qualitative step helps in identifying suitable initial
markings and potential quantitative analysis techniques.

5 Quantitative Approaches

Modelling To transform the validated qualitative Petri net into quantitative ones,
we need to assign to all reactions their rate functions, which generally employ the
current state of the reactions’ substrates, or - in Petri net terms - the current marking
of the transitions’ preplaces. Table 2 gives for each reaction (transition): the reac-
tion equation, the rate function and the involved rate constant(s). The rate functions
are used in the stochastic model as the propensity (hazard) functions, determining
the current stochastic firing rates, and in the continuous model as the deterministic
rate functions, determining the current deterministic firing rates. The conversion of
stochastic and deterministic rate constants into each other is well understood, see
e.g. [Wil06], especially it holds that they are equivalent for first-order reactions.

169

Gilbert, Heiner, Rosser, Fulton, Gu, Trybiło

Table 2 The reaction equation, rate function, and rate constant(s) for each reaction (transition a).
The running numbers correspond to the transition numbers in Figure 4. For better readability we
use the abbreviations of the instances employed, compare Table 1, and s for the signal. For the
concrete values or value ranges of the rate constants see [HGGH07].

reaction equation rate function b rate constant

1 φ → T F c1 c1 = αT F
1′, pfb φ → T F (c11 ·T FS)/(c12 +T FS) c11 = βT F , c12 = γT F
2 T F → φ c2 ·T F c2 = δT F
3 T F + s → T FS c3 · s ·T F c3 = βT FS
4 T FS → FT c4 ·T FS c4 = kd
5 T FS → φ c5 ·T FS c5 = δT FS
6 φ → PhzMS (c61 ·T FS)/(c62 +T FS) c61 = βPhzMS, c62 = γPhzMS
7 PhzMS → φ c7 ·PhzMS c7 = δPhzMS
8 φ → PYO c8 ·PhzMS c8 = αPYO
9 PYO → φ c9 ·PYO c9 = δPYO

a The preplaces of a transition correspond to the reaction’s substrates, and its postplaces to the
reaction’s products.
b Reactions 1′, 6 employ Michaelis-Menten kinetics, while all others follow the mass action
kinetics.

Finding the rate constants proved to be a difficult and time consuming process. It
involved both searches for scientific papers and also discussions with the biologists
on our team. Sometimes the exact value for a parameter could not be found due to
lack of published material on the reactions involved, however the biologists man-
aged to identify a suitable range of values between which the parameter would fall.
The values for the TF were estimated using average values for bacterial transcrip-
tion factors, those for PhzMS using standard rates for similar proteins, and those for
PYO using rates from the literature [OAM+03, PGS+07].

In the following we illustrate the strength of quantitative approaches by selected
examples with special emphasis on sensitivity analysis, which aims at the identifica-
tion of those parameters to which a system is sensitive; i.e. small changes in a param-
eter’s value significantly affect the system behaviour. We start with the stochastic
approach to exclude eccentric system behaviour caused by stochastic noise, before
considering the averaged behaviour in the deterministic continuous approach.

Stochastic analysis The class of stochastic Petri nets [BK02, MBC+95] associates
an exponentially distributed firing rate (waiting time) with each transition, specified
by a firing rate λ . Generally, this state-dependent firing rate is defined by a propen-
sity (hazard) function. Table 2 provides the details which permit reading the net in
Figure 4 as a stochastic Petri net, specifying at the same time RREs.

The unboundedness of the underlying qualitative model precludes the use of all
standard Markov analysis techniques, which are based on the state transition matrix.
Applying Gillespie’s exact simulation algorithm [Gil77] produces data describing
the dynamic evolution of the biological system over time. Note that the template de-
scribes the model for one cell; the organism that we use as the ‘chassis’ for our syn-
thetic system is E. Coli, which is unicellular. However the bacteria exist in colonies

170

A Case Study in Model-driven Synthetic Biology

comprising many cells, each of which contributes to the total production of the re-
sponse. Thus we have carried out simulations for different size colonies in order to
investigate the effect on the observed behaviour, under the reasonable assumption
that there is no interaction between individuals in the colony. Figure 5 shows the
output of the response (PYO) over time for a signal s = 10µM. Each graph repre-
sents a different number of cells being simulated (1, 10, 100 and 1000), averaged
over 10 runs. The noise decreases as the number of cells increases, thus behaviour
of the stochastic model approaches that of the deterministic model (see Figure 7).
Moreover it is obvious that the system reaches a steady state in all shown cases,
determining the value at which the response saturates.

Fig. 5 Diagrams displaying the response (PYO) in number of molecules to a signal s = 10µM
over time produced by simulations for 1, 10, 100 and 1000 cells, averaged over 10 runs.

The goal was to construct a biosensor that would yield a graded signal response.
Due to the difficulties experienced in obtaining data, simulations were compared to
that in [WWR+98], where a similar system was investigated. In that paper a graded
response of the luminescent output was measured over different signal concentra-
tions. The main parameter that affects this was found to be γPhzMS. Using the plot
from [WWR+98], we investigated different values of γPhzMS ranging from 170 to
500 µM. A graph for response over signal for each of the examined 5 values of
γPhzMS (10 cells) is given in Fig. 6 with standard deviation intervals of response at
each value of signal. A lower value of γPhzMS gives a more graded response, which
is consistent with the results reported in [WWR+98].

For more examples and results of the stochastic analyses see [FM07]. We con-
tinue with the computationally less expensive continuous approach considering the
averaged behaviour.

171

Gilbert, Heiner, Rosser, Fulton, Gu, Trybiło

Fig. 6 Diagram showing
increasingly graded response
to the signal for decreasing
values of γPhzMS (10 cells).

Continuous analysis In a continuous Petri net [DA05] the marking of a place is no
longer an integer, but a non-negative real number, and transitions fire continuously
according to the deterministic rate functions. Assigning these rate functions to all
transitions, see Table 2, and reading the net in Figure 4 as a continuous Petri net,
generates the ODEs as given in the equations (1) - (4). The last term in equation (1)
corresponds to the pfb transition (given in grey in Figure 4).

˙T F = αT F −δT F ·T F −βT FS · s ·T F + kd ·T FS +βT F
T FS

γT F +T FS
(1)

˙T FS = βT FS · s ·T F − kd ·T FS−δT FS ·T FS (2)

˙PhzMS = βPhzMS
T FS

γPhzMS +T FS
−δPhzMS ·PhzMS (3)

˙PYO = αPYO ·PhzMS−δPYO ·PYO (4)

Simulating the continuous Petri net, i.e. solving numerically the underlying sys-
tem of ODEs, we get data as given in Figure 7. Here we continue the steady state
analysis, comparing the kernel system against its variant in order to determine the
influence of the pfb. We can see clearly that in both graphs the initial concentrations
of PhzMS and PYO both start at zero. Once the reactions have begun (triggered by a
pollutant) they increase until they reach a steady state. The interesting point to note
is that the production of PYO and PhzMS is much higher in the system with pfb.
In quantitative terms, the model with pfb gives around 30% gain. This result allows
interesting insights into possible design decisions for the system under construction.

Further, we applied a variant of multi-parametric sensitivity analysis (MPSA) in
order to determine those parameters which play a significant role in distinguish-
ing the behaviour between the two models (basic version, and with pfb). Parameter
γPhzMS turned out to be the most sensitive. Thus, in order to refine our comparison

172

A Case Study in Model-driven Synthetic Biology

we would first try to narrow the value range for this parameter. Such information
permits prioritization of costly and time consuming wet-lab experiments.

Fig. 7 Dynamic behaviour
of the continuous Petri nets
allowing comparison of the
two system variants. The thin
curves belong to the kernel
model, and the thick curves to
the model with pfb.

6 Tools

The Petri net models were built using the Snoopy [Sno, HRS08] software which is a
software tool to design and animate hierarchical graphs, among others Petri nets. It
supports qualitative, stochastic and continuous Petri nets, and incorporates the exact
Gillespie algorithm for stochastic nets and a variety of ODE solvers for continuous
nets. Snoopy provides export to various analysis tools as well as SBML import and
export.

The analysis of qualitative Petri nets was performed using Charlie [Cha] which
can perform analysis of structural properties, invariant analysis, reachability graph
based analysis, and generate visualisations of reachability and coverability graphs.
These two tools were developed at the Brandenburg University of Technology, Cot-
tbus.

A specialised Gillespie-style “slow scale stochastic simulation algo-
rithm” [CGP05] was coded in Matlab [MAT] in order to produce the stochastic
simulations of the bio-sensor and the graphs in Figure 5 and Figure 6. Fast reactions
are computed separately to the slow reactions in order to avoid the slow behaviour
of a standard Gillespie-style algorithm. This approach was required due to the
properties of the sensor system, where the binding and unbinding reactions of TFS
are over six orders of magnitude faster than the other reactions.

The multi-parametric analysis of the model to determine those parameters which
play a significant role in distinguishing the behaviour between the two models was
performed using the Minicap package [Fri] implemented in Matlab and exploiting
its specialised ODE solvers MATLAB [SR97].

173

Gilbert, Heiner, Rosser, Fulton, Gu, Trybiło

The SBML version of the model was generated using the BioNessie [Bio] bio-
chemical pathway simulation and analysis tool developed at the University of Glas-
gow.

7 Summary

The formal modelling and analysis mechanisms of Petri nets have been used in a
synthetic biology project to design a completely novel type of self-powering elec-
trochemical biosensor, called ElectrEcoBlu. The novelty lies in the fact that the
response signal is an electrochemical mediator, which enables electrical current to
be generated in a microbial fuel cell. The work was facilitated by a team of molecu-
lar biologists and engineers/modellers working in an integrated laboratory environ-
ment, using Petri nets as a communication means.

The ‘ElectrEcoBlu’ project was carried out as part of the activities of the Univer-
sity of Glasgow’s team in the 2007 international Genetically Engineered Machines
(iGEM) Synthetic Biology competition, for which they won the Environment and
Sensor prize and a gold medal [iGE07].

The outcome so far is the design of a general template of a biosensor, which
provably corresponds in various aspects to the desired behaviour. In the next step,
the engineered cells will be constructed, i.e. they will be placed in a MFC and the
electricity generated under varying conditions and pollutant concentrations will be
measured. It is anticipated - supported by the model-based analyses - that the pres-
ence of the pollutant toluene would result in an enhanced reporter gene product
giving rise to the electron mediator pyocyanin. This in turn is expected to increase
the efficiency of electricity production resulting in a measurable electronic signal
proportional to the concentration of pollutant.

The model in its three versions and more related material are available at:
www.brc.dcs.gla.ac.uk/iGEM/2007.

Acknowledgements We wish to acknowledge David Leader for his valuable contribution to the
determination of rate parameters, and Christine Harkness for her initial work on the continuous
Petri net model. The entire Glasgow iGEM team contributed to the work of the project, including
students Toby Friend, Mai-Britt Jensen, Karolis Kidykas, Martina Marbà, Linsey McLeay, Chris-
tine Merrick, Maija Paakkunianen and Scott Ramsay and staff David Forehand, Gary Gray, Mar-
garet Jackson, Raya Khanin, Emma Travis, and Gabriela Kalna. Rachael Fulton was supported by
a stipend from the Nuffield foundation. In addition we acknowledge financial support by Scottish
Enterprise, the European Union NEST program, the Carnegie Trust, and the University of Glasgow
as well as sponsorship from Merk and Anachem.

References

[Bio] BioNessie. A biochemical pathway simulation and analysis tool. University of Glas-

174

gow, www.bionessie.org.

A Case Study in Model-driven Synthetic Biology

[BK02] F. Bause and P.S. Kritzinger. Stochastic Petri Nets. Vieweg, 2002.
[CGP05] Y. Cao, D.T. Gillespie, and L.R Petzold. The slow-scale stochastic simulation algo-

rithm. Journal of Chemical Physics, 122(1):014116+, 2005.
[Cha] Charlie. A Tool for the Analysis of Place/Transition Nets. http://www-

dssz.informatik.tu-cottbus.de/software/charlie/charlie.html.
[DA05] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer, 2005.
[FM07] R. Fulton and M. Marba. A Stochastic Model for a General Biosensor.

www.brc.dcs.gla.ac.uk/iGEM/2007, Bioinformatics Research Centre, University of
Glasgow, UK, 2007.

[Fri] T. Friend. Minicap - Multi Parameter Sensitivity Analysis. Glasgow iGEm Team,
http://parts.mit.edu/igem07/index.php/Glasgow/Modeling.

[GHL07] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling and
analysing biochemical pathways using Petri nets. In Proc. CMSB 2007, pages 200–
216. LNCS/LNBI 4695, Springer, 2007.

[Gil77] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Jour-
nal of Physical Chemistry, 81(25):2340–2361, 1977.

[Gla07] Glasgow University Team at iGEM - International Genetically Engineered Machine
Competition. http://www.brc.dcs.gla.ac.uk/iGEM/2007/, Cited 20 Jan 2008, 2007.

[HGGH07] C. Harkness, D. Gilbert, X. Gu, and M. Heiner. The use of Petri nets in the
Glasgow iGEM project: ElectrEcoBlu – a Self-powering Electrochemical Biosen-
sor. www.brc.dcs.gla.ac.uk/iGEM/2007, Bioinformatics Research Centre, University
of Glasgow, UK, 2007.

[HP06] M. Heinemann and S. Panke. Synthetic biology - putting engineering into biology.
Bioinformatics, 22(22):2790–2799, 2006.

[HRS08] M. Heiner, R. Richter, and M. Schwarick. Snoopy - A Tool to Design and Ani-
mate/Simulate Graph-Based Formalisms. In Proc. PNTAP 2008, associated to SIMU-
Tools 2008. ACM digital library, 2008.

[iGE07] iGEM - International Genetically Engineered Machine Competition, MIT.
http://parts.mit.edu/igem07/, Cited 20 Jan 2008, 2007.

[MAT] MATLAB. High-level language and interactive environment. MatWorks,
www.mathworks.com.

[MBC+95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing,
John Wiley and Sons, 1995. 2nd Edition.

[OAM+03] Y.Q. O’Malley, M.Y. Abdalla, M.L. McCormick, K.J. Reszka, G.M. Denning, and
B.E. Britigan. Subcellular localization of Pseudomonas pyocyanin cytotoxicity in
human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol, 284(2):L420–430,
2003.

[PGS+07] J.F. Parsons, B.T. Greenhagen, K. Shi, K. Calabrese, H. Robinson, and J.E. Ladner.
Structural and functional analysis of the pyocyanin biosynthetic protein phzm from
pseudomonas aeruginosa. Biochemistry, 46(7):1821–1828, 2007.

[Sno] Snoopy. A tool to design and animate hierarchical graphs. BTU Cottbus, CS Dep.,
www-dssz.informatik.tu-cottbus.de.

[SR97] L. F. Shampine and M. W. Reichelt. The MATLAB ODE Suite. SIAM Journal on
Scientific Computing, 18:1–22, 1997.

[Syn08] SyntheticBiology.org. www.syntheticbiology.org, Cited 20 Jan 2008.
[vHNM+00] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, and S. J.

Wodak. Representing and analysing molecular and cellular function in the computer.
J Biological Chemistry, 9-10(381):921–935, 2000.

[Wil06] D.J. Wilkinson. Stochastic Modelling for System Biology. CRC Press, New York, 1st
Edition, 2006.

[WWR+98] B.M. Willardson, J.F. Wilkins, T.A. Rand, J.M. Schupp, K.K. Hill, P. Keim, and
P.J. Jackson. Development and Testing of a Bacterial Biosensor for Toluene-Based
Environmental Contaminants. Appl Environ Microbiol., 3(64):1006–1012, 1998.

175

Image Segmentation by a Network of Cortical
Macrocolumns with Learned Connection
Weights

Markus Lessmann, Rolf P. Würtz

Abstract Image understanding in the brain or a computer requires segmentation of
observed images, i.e., their partition into different semantically-connected parts that
each constitute one physical object. This task is fundamental for further processing
and analysis of visual information and seems to be accomplished by the brain very
easily. Nevertheless it is a very demanding challenge for computer algorithms.

contour information by favoring closed contours. The connecting weights have been
learned from real image sequences before. Then, segmentation is achieved on the
basis of color, texture, and contour information.

1 Introduction

The task of computer vision as well as human vision is to extract semantic infor-
mation from images or image sequences. This means that the values of a priori
unrelated pixels on a camera chip or on the retina of the eye must be organized into
larger entities, which can then be identified as objects. A subtask is the division of
images into object candidates, a process called segmentation. Psychologically, the
properties of this process have been studied for a long time.

Wolfgang Köhler and Kurt Koffka formulated eight Gestalt principles, formal rules
that guide this process [1]. Later this list was extended by Stephen Palmer who

Markus Lessmann
Institute for Neuroinformatics, Ruhr-University Bochum
e-mail: Markus.Lessmann@neuroinformatik.rub.de

Rolf P. Würtz
Institute for Neuroinformatics, Ruhr-University Bochum
e-mail: Rolf.Wuertz@neuroinformatik.rub.de

Please use the following format when citing this chapter:

Based on experiments in human vision Gestalt psychologists like Max Wertheimer,

Lessman, M. and Würtz, R.P., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-Inspired
Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston: Springer), pp. 177–186.

In this article, we present a network of neuronal macrocolumns, which processes

Markus Lessmann, Rolf P. Würtz

added 3 further rules [2]. Many of these principles take into account the spatial or
temporal context in which different patterns appear.

The details of how the process of segmentation is carried out in the brain, i.e.,
how networks of neural agents can actually perform this task, are still unknown. On
the technical side, the organizational principles that must be applied for meaningful
segmentation are intense investigation.

In our project, we use a biological model of basic neuronal ensembles in the
brain to perform segmentation by using only non-semantic bottom-up criteria that
are easily extractable from input data by application of mathematical filters like
Gabor wavelets and Gaussians, both known to be applied by the visual cortex. This
means we only rely on a few of the Gestalt rules, namely the law of proximity,
the law of similarity, and the law of collinearity and curvilinearity. The first one
postulates the vicinity of pixels representing the same object. Distant, unconnected
parts of an image are unlikely to belong to the same object. The second rule states
the resemblance of areas of the input picture for belonging together. Adjacent points
with very similar color and texture are highly likely to belong to the same item. The
last rule concerns the contours of an object. In the ideal situation a closed contour is
detected by filter functions and separates it from the background. During perception
contour segments are grouped by the visual system in a way that smooth curves
occur without any acute angles.

To apply these rules contour information is extracted from all 3 channels of col-
ored input images using a biologically-inspired convolution with Gabor wavelets
of 8 different orientations, which collect evidence for oriented contour elements,
and Gaussians,which calculate mean color values for each pixel. The contour in-
formation is preprocessed using non-maximum suppression to keep as much edge
information as necessary but delete as many unimportant edges as possible.

The responses of the Gabor and Gaussian filters provide the input to the mini-
columns of a macrocolumn network, which will be introduced in the third chapter.
The network calculates for each pixel the presence or absence of an edge and, in
case of presence, its orientation. This data is combined with information about the
similarity of color and texture to decide on the connectedness of neighboring points,
finally yielding image segments.

2 Input pictures, filter functions and preprocessing

The program works on color pictures transformed into CIELab color space for fur-
ther processing. This is done because of the resemblance of Lab data to the output
of retinal neurons and its construction following human perception [3]. By applying
Gabor filters to a- and b-channel of an image it is easy to simulate color-coding
simple cells of the primary visual cortex that compare red stimuli with green ones
and the blue components of the input with yellow ones [4].

178

Image Segmentation by a Network of Cortical Macrocolumns

Filter functions As mentioned before Gabor wavelets are used throughout this pro-
gram as well as Gaussians. The Gaussians have a width of 1.0 pixel, the Gabor
functions are elliptic with widths σ = 1.25 and τ = 1.0. Eight equally spaced ori-
entations and five frequencies with a ratio of 1.025. As a model of complex cells in
the visual cortex, the magnitude of the complex-valued Gabor responses is used.

Preprocessing After the extraction of contour information a lot of the edges per-
ceivable by a human are detected, but also a lot more contours parallel to these
meaningful outlines. The reason for this is that a Gabor wavelet placed next to a
contour also yields a non-zero-response. To sort these out non-maximum suppres-
sion is used. Thus, the orientation of the biggest Gabor filter response at every pixel
is determined. Then this biggest value is compared with the best filter responses of
pixels on a straight line perpendicular to the orientation of the maximum value, pro-
vided that these responses have the same filter alignment. The maximum of these
values is labeled by incrementing a counter. If only the pixels with counter values
bigger than one are used a lot of unnecessary edges have been erased. The edge
elements extracted by the edge detectors and the preprocessing step are shown in
figure 1.

3.1 Fundamentals of the macrocolumn network

The macrocolumn network is based on findings about biological nerve cell clus-
ters in the mammalian cortex and was first introduced in [5, 6]. It consists of a set of
macrocolumns each composed of k different minicolumns, which in turn are a bunch
of highly interconnected neurons. These minicolumns are represented by their ac-
tivity pα(t), which is the fraction of its neurons firing at time t. α is the index of
the respective minicolumn. Minicolumns get inputs from the input data and mini-
columns of other macrocolumns they are connected with. All minicolumns of the
same macrocolumn are inhibited proportional to the maximum of their activity and
a modifiable parameter ν .

d
dt

pα(t) = apα(pα −ν max
β=1..k

pβ − p2
α) (1)

The dynamics of the network reveal a bifurcation depending on the value of ν .
For ν < 0.5 a macrocolumn can have arbitrarily many active minicolumns, but for
ν > 0.5 only states with at most one active minicolumn are stable. This puts the
minicolumns into competition with each other when ν is raised from start values
below 0.5 to values above 0.5. At the end of this process only the minicolumn with
the biggest input can still be active, all others are turned off. That means the system
makes a decision on which column received the strongest input.

179

3 The Macrocolumn Network

Markus Lessmann, Rolf P. Würtz

Fig. 1 Preprocessing of a globe image. Top: edges from edge detectors, bottom: edges after non-
maximum suppression.

180

Image Segmentation by a Network of Cortical Macrocolumns

To use information about the local environment the minicolumn i can be con-
nected to other columns in its vicinity. Every connection is defined by the index of
the associated minicolumn j and the weight of the connection. These weights are
given in a matrix Ri j. They are multiplied with the current activity of column j and
added to the differential equation.

d
dt

pα(t) = apα(pα −ν max
β=1..k

pβ − p2
α)+κ

N

∑
j=1

Rα j pE
j +ησt (2)

Gaussian noise (ησt) is added to distinguish between equally sized inputs. The fac-
tor κ defines the relative importance of the connection inputs.

3.2 Use of the macrocolumn network

For the task of contour completion, the macrocolumns must decide whether a pixel
of the input picture is part of a contour with a specific orientation. To fulfill this func-
tion, preprocessed and normalized responses of Gabor filters constitute the starting
values of the minicolumns. Since every picture consists of 3 different color channels
and the number of minicolumns should be kept at a minimum due to computational
costs one of them is picked to represent this part of the image. This is done by com-
puting the variance of the Gabor filter responses for each channel. That with biggest
variance includes the filter response that differs most from responses for other orien-
tations and is highly likely to contain the most distinctive edge. Therefore, its filter
values are selected as input to the network. By setting a threshold for the variance,
weak edges can be filtered out.

Thus, every minicolumn represents a contour element with a specific orienta-
tion. If the minicolumn wins against all others in the macrocolumn then it obtains
strong inputs from the filter values and minicolumns of surrounding macrocolumns.
That means the picture contains an intense luminance or color contrast at this point
or an edge of this orientation fits well to the adjacent contours. An additional 9th
minicolumn becomes active if the image does not contain an edge at this pixel. The
starting value for this background minicolumn decides how many further contours
are detected during the simulation of the network and has to be chosen manually.
The higher the start value the smaller is the chance of other minicolumns to com-
pete with the 9th column. It is set to 0.0 for all edges labeled by the preprocessing to
be meaningful and to values in the range of 10.0 for all else. That way meaningful
contours need not compete with the background and can win easily. All other edges
can be suppressed by the background column but still have a chance to win if they
get strong inputs via their connections which means they fit well to the surrounding
edges.

181

Markus Lessmann, Rolf P. Würtz

Fig. 2 Processing of a globe image by the macrocolumn network. Top: input to the macrocolumn
network, bottom: contours after network processing.

182

Image Segmentation by a Network of Cortical Macrocolumns

3.3 Learning of the macrocolumn network

In order to enhance contours the network must rely on lateral connections, which
support these, even in the case of missing edge segments. So the rule would be that
roughly collinear edge detectors should excite each other, while orthogonal ones
should inhibit each other. We have made several attempts to specify the connecting
weights on a theoretical basis, but the results were not satisfactory. Therefore, we
turned to learning them from examples.

3.3.1 Learning rule and normalization

To improve the edge information of input pictures the network has to learn typi-
cal spatial relations between different edge orientations from sample pictures (see
also [7]). This is done by processing of the sample images with the network and
modification of the connection weights using the activities of the minicolumns after
each network simulation in conjunction with a Hebbian learning rule as described
by Singer [8]:

∆wi j(t) = ε ·Ai(t) ·A j(t)

wi j(t) = wi j(t −1)+∆wi j(t) if Ai(t) > Θu and A j > Θu

wi j(t) = wi j(t −1)−∆wi j(t) if Ai(t) > Θu and A j < Θl

In these equations, ε is the learning rate, wi j(t) the connection weight between mini-
columns i and j at time t, and Θu and Θl are appropriately chosen upper and lower
thresholds for the activities Ai(t) and A j(t) of the concerned columns (Θu = 0.4
and Θl = 0.1). If both minicolumns have activities bigger than Θu their correlation
is significant and their connection is strengthened. If minicolumn i is very active
(Ai(t) > Θu) but minicolumn j is not (A j(t) < Θl) it means that j is not of much
importance for i and the weight is reduced. In all other cases it is not modified.

Of all connections to the same minicolumn this learning rule favors those with
high temporal correlation over those with low correlation. Further competition be-
tween them is introduced by normalization over index j. One occurring problem is,
that the influence of the weights can completely overcome the filter values of the
input image. This is especially unfavorable in the beginning of the learning process,
when they are learned from only a few examples and not very reliable. Therefore,
they are scaled to 0.1 to keep their influence small enough.

3.3.2 Learning data

Pictures for learning of edge relations should fulfill some criteria:

1. Edges of one single object should be learned to be sure that they have a semantic
context and don’t belong to neighboring items.

183

Markus Lessmann, Rolf P. Würtz

2. The object should be moving so that many possible relations can be observed.
3. The object must not be too inflexible. A very inelastic object like a metal-ball

would not reveal many different edge-relations during movement.
4. Only parts of the moving object should be allowed for learning because static

background would disturb the statistics of the learning samples.

To match these requirements 2 different sets of training pictures have been cho-
sen. The first one are several photo sequences of a person moving his arm in
front of a static background. The other set are the first 8 objects of the COIL100-
database [9]. This collection consists of photos of 100 different objects that are
rotated about 5◦ between 2 shots. Therefore they also contain a movement of the
item and should be appropriate.

3.3.3 Selection of pixels for learning

During learning, one picture after another of the training set is processed by the net-
work. Then pixels have to be chosen that contain valuable information about edge
relations in the training picture. The activities of the macrocolumns at these pixels
and of the macrocolumns in an 7×7 environment are read out and used for Hebbian
learning. To select the specific pixels a more fundamental segmentation method is
used which relies on the movement of objects in the picture (Gestalt law of com-
mon fate, see also [7] for discussion). Therefore, movement vectors are calculated
for every part of the picture by comparing Gabor responses of a certain pixel in one
picture of the sequence with the responses in a 3× 3 environment of the current
picture element in the following picture. By selecting the pixel with the highest sim-
ilarity a translation vector can be determined that can be compared with vectors of
surrounding pixels. This method does not yield very precise movement information,
but it is good enough to separate a moving object from a static background. Each
pixel of the area labeled this way containing an edge is chosen for learning purposes.

4 Segmentation

The contours improved by the network are shown in figure 2 and are subsequently
used for segmentation with the following procedure.

Color similarity To calculate the similarity of color values of 2 adjacent pixels the
difference vector in Lab space and its magnitude are determined. It is one option not
to use the L-channel so that only color and no luminance differences are considered.
The range from 0 to the maximum difference vector magnitude in the picture is first
projected onto the range from −π

2 to π
2 and than onto −∞ to ∞ using the tangent. At

last the Fermi function 1
1+ec·y with c = 0.1 transforms the interval into a similarity

measure with 0.0 for the maximum difference vector and 1.0 for no distance in color
space. Now a threshold decides about the connectedness of 2 neighboring pixels.

184

Image Segmentation by a Network of Cortical Macrocolumns

Fig. 3 Segmentation of sample picture before (left) and after processing by the network (right).
All adjacent pixels with the same grey value are connected.

Texture similarity Vectors of Gabor responses are now used as texture descriptors,
the parameters are as before, but the scales are spread wider. When comparing the
similarity of texture features the normalized dot-product of the vectors of Gabor
responses is calculated and than mapped onto the range from 0.0 to 1.0 by adding
1.0 and multiplication with 0.5. After doing this the mean value of color and texture
similarity is computed and evaluated by means of a threshold.

Integration of contour information Contour information is taken into account by
connecting all neighboring pixels containing edges and canceling all connections
between edge and non-edge pixels originating from color and texture similarity.

5 Discussion

We have presented a biologically inspired network that organizes image segmen-
tation. This is a collaborative computation, which follows biological inspiration.
The required parameters are learned from visual examples using a neurobiologically
plausible learning rule. We could show that these learned parameters worked better
than the ones we could come up with by theoretical inspection. This is evidence
for the correctness of the assumption that the wiring of the visual system reflects
the statistics of natural images. The images processed by the contour network were
much better suited for segmentation (see figure 3). Full details can be found in [10].
Future developments aim at integrating high-level knowledge of previously seen
objects into the segmentation process.

185

Markus Lessmann, Rolf P. Würtz

Acknowledgements

Partial funding by the Deutsche Forschungsgemeinschaft (MA 697/5-1, WU 314/5-
2) is gratefully acknowledged.

References

[1] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt II. Psychologische
Forschung, 4:301–350, 1923.

[2] Steven E. Palmer. Vision Science. MIT Press, 1999.
[3] David Falk, Dieter Brill, and David Stork. Seeing the Light: Optics in Nature,

Photography, Color, Vision, and Holography. John Wiley & Sons, New York,
1986.

[4] David H. Hubel and Margaret S. Livingstone. Anatomy and the physiology of
a color system in the primate visual cortex. Journal of Neuroscience, 4(1):309–
356, 1985.

[5] Jörg Lücke, Christoph von der Malsburg, and Rolf P. Würtz. Macrocolumns
as decision units. In José R. Dorronsoro, editor, Artificial Neural Networks –
ICANN 2002, Madrid, volume 2415 of LNCS, pages 57–62. Springer, 2002.

[6] J. Lücke and C. von der Malsburg. Rapid processing and unsupervised learning
in a model of the cortical macrocolumn. Neural Computation, 16(3):501 – 533,
2004.

[7] Carsten Prodöhl, Rolf P. Würtz, and Christoph von der Malsburg. Learn-
ing the gestalt rule of collinearity from object motion. Neural Computation,
15(8):1865–1896, 2003.

[8] A. Artola, S. Bröcher, and W. Singer. Different voltage-dependent thresholds
for inducing long-term depression and long-term potentiation in slices of rat
visual cortex. Nature, 347:69–72, 1990.

[9] S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library (COIL-
100). Technical Report CUCS-006-96, Columbia University, 1996.

[10] Markus Lessmann. Konturenerkennung mit einem Modell kortikaler
Makrokolumnen. Master’s thesis, Physics Dept., Univ. of Dortmund, Ger-
many, January 2008.

186

Integrating Emotional Competence into

Man-Machine Collaboration

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

Abstract Emotional competence plays a crucial role in human communication and

hence should also be considered for improving cooperation between humans and

robots. In this paper we present an architecture and its realization in the robot head

MEXI, which is able to recognize emotions of its human counterpart and to react

adequately in an emotional way by representing its own emotions in its facial ex-

pression and speech output. Furthermore, mechanisms for emotion and drive regula-

tion are presented. Therefor MEXI maintains an internal state made up of (artificial)

emotions and drives. This internal state is used to evaluate its perceptions and action

alternatives and controls its behavior on the basis of this evaluation. This is a major

difference between MEXI and usual goal based agents that rely on a world model

to control and plan their actions.

1 Introduction

Quality of human collaboration in accomplishing a specific task does not only de-

pend on their objective competences regarding fulfillment of that task but also on

their emotional competence which determines their behavior as a group. The same

certainly also holds for tasks to be fulfilled by humans in cooperation with machines

or robots. Accordingly, it seems reasonable to equip machines with emotional com-

petence for improving the quality of task accomplishment, i.e. the task’s result and

the task accomplishing process itself. According to [1] and [2] emotional compe-

tence includes several aspects like the abilities to recognize and represent emotions,

which are in the focus of many researchers nowadays. But emotional competence

also includes mechanisms for emotional behavior, which means adequate reaction

on emotions recognized at others, and emotion regulation, i.e. adequate handling of

own emotions. In order to show emotional competence in man-machine coopera-

Natascha Esau, Lisa Kleinjohann, Bernd Kleinjohann

C-LAB, University of Paderborn, Germany e-mail: nesau, lisa, bernd@c-lab.de

Please use the following format when citing this chapter:
Esau, N., Kleinjohann, L. and Kleinjohann, B., 2008, in IFIP International Federation for Information Processing, Volume 268;
Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 187–198.

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

tion all four aspects have to be considered as it is realized by the robot head MEXI

presented in this paper. MEXI is able to recognize human emotions and to react

adequately in its communication behavior (including emotion representation) with

regard to emotions exhibited by its human counterpart. Furthermore, MEXI’s inter-

nal architecture, which is based on emotions and drives for representing its actual

state, integrates also the aspect of emotion regulation.

Numerous architectures have been proposed covering one or another aspect of

emotional competence. Several expressive face robots have been implemented es-

pecially in Japan and USA, where the focus has been on mechanical engineering and

design, visual perception, and control. Examples are Saya [3] or K-bot [4] that are

constructed to resemble young females and are even equipped with synthetic skin,

teeth and hair. They can only recognize and represent emotions. The humanoid robot

WE4-RII [5], also determines how stimuli from the environment are evaluated in its

current emotional state and how the robot reacts on them. Their model of emotion

dynamics is inspired by the motion of a mass-spring system. Arkin et al. [6] discuss

how ethological and componential emotion models influence the behavior of Sony’s

entertainment robots. The homeostasis regulation rules described in [7] is employed

for action selection in Sony’s AIBO and the humanoid robot SDR as well as in our

approach. Canamero and Fredslund [8] realized the humanoid robot Feelix based

on an affective activation model that regulates emotions through stimulation levels.

Part of it relying on Tomkins’ idea that overstimulation causes negative emotions

[9] is also adopted in MEXI.

Most similar to our work is the robotic head Kismet built at the MIT [10]. How-

ever, KISMET does not recognize emotions like MEXI, but only extracts the inten-

tion of its human counterpart e.g. from speech prosody. Although Kismet’s motiva-

tion system is strongly inspired by various theories of emotions and drives in hu-

mans and animals like MEXI, their target is completely different. While KISMET’s

target is to imitate the development and mechanisms of social interaction in humans,

MEXI follows a constructive approach in order to realize the control of purely reac-

tive behavior by its drives and artificial emotions and to show this internal state by

corresponding facial expressions and speech utterances.

In this paper we present the robot head MEXI and how its internal architecture

(Section 2), which is based on emotions and drives for representing its actual state,

integrates the aspects of emotion recognition, representation and regulation (Sec-

tion 3). Furthermore, we show how MEXI is able to react adequately in its com-

munication behavior with regard to emotions exhibited by its human counterpart

(Section 4).

2 Overview of MEXI’s Architecture

The robot head MEXI has 15 degrees of freedom (DOF), that are controlled via

model craft servo motors and pulse width modulated (PWM) signals. The neck has

three DOF (pan, tilt, draw), eyes and ears each have 2 DOF and the mouth has 4

188

Integrating Emotional Competence into Man-Machine Collaboration

DOF. Furthermore, MEXI is equipped with two cameras, two microphones and a

speaker in its mouth for audio output. These facilities allow MEXI to perceive its

environment and react on it by representing a variety of emotions like happiness,

sadness, or anger via its facial expressions, head movements and by its speech out-

put.

MEXI’s software architecture (see Figure 1) is designed according to Nilsson’s

Triple-Tower Architecture, that distinguishes between perception, model and action

tower [11].

Camera

Perception

Emotion Engine Action Control

Motion
Control

Micro-
phone Speech

Generation

15 DOF

Servo

Motors

Speaker

Vision
Processing

Speech
Processing

Behavior System

Chatbot

Control Influence

Reactive System

Emotion
Recognition

Fig. 1 Architecture of MEXI

The Perception component processes MEXI’s visual inputs and natural language

inputs. The Vision Preprocessing is responsible for detecting MEXI’s toys or human

faces for instance in order to track them with its eyes and head movements. The

Speech Preprocessing is responsible for speech recognition, which is realized by

the commercially available software ViaVoice [12]. One aspect of emotional com-

petence is emotion recognition. In MEXI emotion recognition from human facial

expressions [13] as well as from the prosody of human natural speech [14] is sup-

ported.

The Reactive System allows MEXI to directly respond to its visual and natural

speech inputs received from its environment by corresponding head movements,

facial expressions and natural speech output. The Behavior System is responsible

for MEXI’s movements. For generating the content of MEXI’s answers the slightly

extended commercially available Chatbot ALICE [15] is used. It receives the tex-

tual representation of input sentences from the speech recognition and generates

textual output sentences. The content of the sentences generated by the Chatbot is

influenced by MEXI’s Emotion Engine. If MEXI is happy for instance, by chance

corresponding output sentences like ”I am happy.” are generated.

MEXI uses its current perceptions and its internal state, representing the strength

of its emotions and drives, to determine its actions following two principle objec-

tives: One is to feel positive emotions and to avoid negative ones for itself and also

for its human counterpart. The second objective is to keep its drives at a comfortable

(homeostatic) level. In a feedback loop MEXI’s internal state and its current percep-

tions are used by the Emotion Engine to configure the Behavior System in such

189

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

a way that appropriate behaviors are selected in order to meet the two objectives

stated above (see Section 3).

The Action Control component controls the servo motors for the above men-

tioned 15 DOF via the component Motion Control and is responsible for generat-

ing natural speech outputs with prosodic features corresponding to MEXI’s current

emotional state via the component Speech Generation. Together with the Behav-

ior System the Action Control is responsible for the emotion representation aspect

of emotional competence. The remainder of the paper will concentrate on the real-

ization of emotion regulation mechanisms and emotional behavior by the Emotion

Engine.

3 Emotion Engine

The Emotion Engine is the key component for realizing MEXI’s emotional compe-

tence regarding emotion regulation and adequate behavior, which results in corre-

sponding emotional expressions in MEXI’s face and speech output. Since MEXI’s

main purpose of cooperation is communicating with its human counterpart the ba-

sic behaviors provided by the Behavior System were selected accordingly. How-

ever, in different contexts (and with according actors) additional behaviors real-

izing other tasks could be integrated as well. As already mentioned, MEXI’s co-

operation is determined by the two objectives, to keep its drives at a comfortable

(homeostatic) level and to feel positive emotions and to avoid negative ones (for

itself and its human counterpart). These objectives determine MEXI’s actions re-

sulting in a pro-active regulation of emotions and drives. Furthermore, an intrin-

sic self-regulation mechanism for automatic decay of emotions and cyclical in-

crease/decrease of drives, as it can be observed also in humans, is realized. These

regulation mechanisms and the representation of MEXI’s emotions and drives are

described next. Afterwards the feedback loop between Behavior System and Emo-

tion Engine realizing MEXI’s emotional behavior is explained.

3.1 Emotion, Drives and their Regulation

For MEXI we distinguish a small set of basic emotions that can be represented eas-

ily by MEXI’s facial expression and audio output, i.e. anger, happiness, sadness and

fear. Happiness is a positive emotion, which MEXI strives for, while the others are

negative ones that MEXI tries to avoid. In order to realize a simple control mecha-

nism for MEXI we consider mainly cyclical homeostatic drives. Homeostatic drives

motivate behavior in order to reach a certain level of homeostasis. Examples in hu-

mans are hunger or thirst. MEXI has for instance a communication drive or a playing

drive. Violation of the homeostasis is the more likely to cause according behavior

the more the discrepancy between homeostasis and the actual ”value” increases.

190

Integrating Emotional Competence into Man-Machine Collaboration

Furthermore, an exploratory drive lets MEXI look around for new impressions, if

none of the homeostatic drives causes any behavior.

In MEXI’s Emotion Engine each emotion ei is represented by a strength value

between 0 and 1 and each drive di by a strength value ranging from -1 to 1. For each

emotion a threshold th defines when MEXI’s behavior will be configured to show

this emotion, e. g. by corresponding facial expressions (see Figure 2, shaded areas).

This is done by increasing the gain values of the respective desired behavior(s) (see

next subsection). Drives have an upper and lower threshold thu and thl that define

when a drive strives to dominate MEXI’s behavior (shaded areas, see Figure 2) by

increasing the respective gains. This also avoids that MEXI’s behavior oscillates in

order to satisfy competing drives. In order to realize pro-active behavior MEXI’s

drives increase and decrease in a cyclical manner. Between its thresholds a drive is

in homeostasis.

The course of a drive di(t) and an emotion ei(t) over time t is determined by

the following equations, where ∆di(t) and ∆ei(t) denote their change between time

points t −1 and t:

di(t) = di(t −1)+∆di(t), with ∆di(t) = cdi
·δdi

(t) · kdi
(t), (1)

ei(t) = ei(t −1)+∆ei(t), with ∆ei(t) = cei
· kei

(t). (2)

cdi
and cei

are positive values from the interval]0,0.5] that determine the gradi-

ent of a drive or emotion due to intrinsic regulation. They were determined exper-

imentally. This intrinsic regulation happens even, if MEXI receives no perceptions

or executes no behavior that could influence the respective drive di or emotion ei.

The acceleration factors kdi
(t) and kei

(t) may accelerate or slow down the intrinsic

regulation if their absolute value is > 1 (acceleration) or < 1 (slow down). They

determine the influence of external stimuli or of MEXI’s own behavior regarding

a specific drive or emotion. How these factors are determined is described more

closely below.

For drives an additional factor δdi
(t) ∈ {−1,1} determines the direction of their

course. It is dependent on the previous values ∆di(t−1) and di(t−1). When a drive

for example becomes 1 at the time t (di(t) = 1), it starts decreasing due to MEXI’s

internal regulation mechanisms and δdi
(t +1) becomes −1 meaning that the drive is

going to be satisfied. When a drive becomes −1 (di(t) =−1), it automatically starts

increasing and δdi
(t +1) becomes 1. This factor allows to realize a cyclical behavior

of drives. For emotions this factor can be ommitted, since here only an automatic

decrease is realized.

The principle development of emotions and drives over time is shown in Figure 2.

Also the principle determination of acceleration factors due to external stimuli is

explained below.

The solid curve in Figure 2 a) shows the development of a drive di. In order to

realize pro-active behavior MEXI’s drives increase and decrease in a cyclical man-

ner. As a default excitation MEXI’s drives would follow a sine wave (dashed curve)

and incorporate only internal regulation mechanisms. This is realized by assigning

191

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

b)

th

1

I1 I2 I3 I5I4 time

strength

a)

1

thu

thl

-1
I2I1 I3 I4 I5 I6 I7 I8

strength

time

Fig. 2 Emotions and Drives

δdi
the values 1 and - 1 alternatingly. For drives the interval]thl , thu[represents

the level of homeostasis, 1 represents a very large drive striving for its satisfaction

and -1 expresses that the drive was overly satisfied. Stimuli, i.e. perceptions and

own behavior, influencing the drive are depicted as dotted line in Figure 2. Stimuli

may accelerate a drive’s increase (intervals I2, I8). The stimuli that satisfy the drive

cause a steeper decrease (interval I4). In these intervals (t ∈ {I2, I4, I8}) the acceler-

ation factor is greater than 1 (kdi
(t) > 1) and accelerates a drive’s increase (I2, I8)

or its decrease (I4). Other stimuli may cause a slower increase or decrease of the

drive. In this case the factor kdi
(t) has a value between 0 and 1 (0 < kdi

(t) < 1).

The slower increase is shown in interval I6, where a negative stimulus indicates its

over-satisfaction. In some timing intervals MEXI’s perceptions or their absence do

not influence the depicted drive (indicated by a zero line of the stimuli, e.g. interval

I1, I3, I7, In these cases the factor kdi
(t) is equal to 1 and the course of a drive runs

in parallel with the excitation function.

Imagine for example that MEXI sees a human face in a state where its com-

munication drive dcom is decreasing (δcom = −1). Since the current perception sig-

nals a potential communication partner for MEXI, its communication drive should

be satisfied faster. This is reached by setting the acceleration factor kcom(t) to a

value k > 1. If no stimuli, that may influence the communication drive, are recog-

nized kcom(t) remains 1 and does not accelerate the normal internal regulation of

the communication drive. If for instance the person disappears (the face becomes

smaller) the communication drive might decrease slower, and hence the value of

kcom(t) should be in the interval]0,1[.
Figure 2 b) shows the development of a positive emotion like happiness over time

as the solid curve. The dotted curve shows the duration and evaluation of MEXI’s

current percepts. For positively evaluated percepts the curve is above the time axis,

for negative ones it is below the time axis. In contrast to drives, for each emotion

only one threshold th defines when MEXI’s behavior will be configured to show

this emotion, e. g. by corresponding facial expressions (shaded area) (see next sub-

section).

192

Integrating Emotional Competence into Man-Machine Collaboration

The acceleration factor kei
(t) for an emotion ei depends on the previous value

of the emotion ei(t − 1), the evaluation of the current perception and also on the

current drive state. If a drive di concerning an emotion ei increases, MEXI reacts in

a neutral way, i. e. kei
(t) = 0 and hence also ei(t) = 0. If that drive starts decreasing

(δi(t) changes its value from 1 to -1 and hence ∆di becomes < 0) then the emotion

ei increases very rapidly and kei
(t) ≥ 1. The decrease of an emotion could also be

accelerated by setting kei
(t) to a value k ≤−1.

The increase of a positive emotion may be caused by positive perceptions of

its environment (intervals I1, I3) and by the drives (their fulfillment). Hence, for

t ∈ {I1, I3} the acceleration factor kei
(t) is larger than 1 (kei

(t) > 1). The decrease

happens automatically with a certain adaptable amount per time unit, if the positive

stimulus has disappeared (intervals I2, I4). In this case the acceleration factor kei
(t)

is equal to −1. By a negative stimulus the decrease of ei(t) is accelerated by setting

kei
(t) < −1 (interval I5).

Imagine for instance the communication drive dcom and its impact on the emotion

happiness ehappy. Assume that it is not satisfied (dcom > thu and ∆dcom < 0) initially.

Then happiness may be increased by a positive perception perhaps a human face.

This should result in an accelerated increase of ehappy, which is reached by setting

the respective acceleration factor khappy > 1. If the face suddenly disappears, happi-

ness decreases (khappy = −1). If according stimuli are recognized, happiness could

decrease even faster resulting in khappy(t) < −1.

3.2 Control of the Behavior System by the Emotion Engine

The feedback loop between Behavior System and Emotion Engine realizing MEXI’s

behavior as adequate reactions to its environment and the emotions of its human

counterpart is depicted in Figure 3. For clarity reasons only some behaviors, drives

and emotions are shown.

For realizing MEXI’s Behavior System the paradigm of Behavior Based Pro-

gramming developed by Arkin [6] is applied. So called basic behaviors b like Smile,

Look around, Follow face, Avert gaze or Sulk, which may be either cooperative or

competitive, are mixed by an accumulator Σ to compute the nominal vector R for

the actor system from the fixed-sized vectors Cb. A Cb generated by the basic be-

havior b contains 15 triplets (cs,b,vs,b,ms,b) (one for each servo motor s) consisting

of the nominal value cs,b, a vote vs,b for each of the nominal values and a mode flag

ms,b (cooperative vs. competitive).

Using the vote values a behavior can signal whether the output is of high impor-

tance (vs,b = 1) or should have no influence at all (vs,b = 0). Via this mechanism the

influence of MEXI’s external percepts, e.g. the emotions recognized at its human

counterpart, on its behavior is realized. Apart from that also its internal emotional

state may influence the actual behavior by setting appropriate gain values. The ac-

cumulator combines external votes and internal gains of a behavior b by calculating

a weight ws,b = gs,b · vs,b as their product. This weight is used to do the ranking of

193

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

Perception

Behavior System

FollowFace

Smile

Σ

g1

g2

1C

2C

R

I

Motion

Control
Sulk

AvertGaze

3C

4C

LookAround
5C

g3

g4

g5

M
ic

ro
p
h
o

n
e

S
e
rv

o
 M

o
to

rs

...
Emotion Engine

Emotion

Joy

Evaluation

E
x
c
ita

tio
n

Emotion

Anger

Evaluation

E
x
c
ita

tio
n

Commu-

nication

Drive

Evaluation

E
x
c
ita

tio
n

Vision

Processing

Action

Control

Configuration

Speech

Processing

C
a

m
e

ra

Speech

GenerationChatbot

S
p

e
a
k
e
r

Emotion

Recognition

Fig. 3 Detailed Architecture

the behaviors. If the behavior b with highest weight is competitive, a winner-takes-

all strategy is used and the resulting nominal value for servo s is rs = cs,b. Else a

weighted median of all cooperative values is calculated. This calculation as well as

the calculation of the Influence vector I is described e.g. in [16].

The Excitation components allow to realize MEXI’s regulation mechanisms as

described above. The Configuration component determines from the actual percepts

(including the emotional state of MEXI’s counterpart) and the internal state of emo-

tions and drives which behaviors of the Behavior System should be preferred by

setting the gain values for each behavior b. If a drive increases the gain for the be-

haviors, that will satisfy that drive, is increased by a certain (variable) amount per

time. If a drive decreases the gains for the ”satisfying” behaviors are decreased re-

spectively. If a percept causes a certain emotion in MEXI the emotion strength is

increased. If a certain threshold is reached the gains for according behaviors e. g.

those that generate the corresponding facial expression are set to 1 and the Chat-

bot and Speech Generation are instructed to produce according speech output and

prosody. Conflicts between drives may be solved for instance by a fixed priority.

An example showing these interdependencies is described in Section 4. The gain

calculations are presented elsewhere [16].

The Evaluation component evaluates the influence vector I calculated by the

accumulator in the Behavior System in order to determine whether the preferred

behavior really dominates the actual actions activated by the Motion Control. This

decision is positive, if for competitive behaviors the influence equals 1 and for co-

operative behaviors a specific threshold is exceeded. If the behavior was initiated by

an emotion the negative excitation function is switched on for subsequent cycles in

order to let the emotion strength decrease automatically (kei
becomes negative). In

case of drives the strength of the drive is decreased by a specific amount (δdi
be-

comes -1). This is repeated, if the behaviors are preferred also for subsequent cycles

until the lower threshold of the drive is reached.

194

Integrating Emotional Competence into Man-Machine Collaboration

4 Example Session

For an example, how MEXI reacts adequately to human emotions, have a look at

the diagrams in Figure 4 that show how MEXI behaves when at time t0 a person

appears and MEXI sees a human face. At t1 MEXI recognizes that the person has a

sad facial expression and tries to distract her from that feeling by playing. - MEXI

plays by getting shown its toy and tracking it. - At t3 MEXI detects the toy and plays

with it until it becomes boring and MEXI looks at the human face again at t4.

The upper two diagrams show the votes vsh,b and vsm,b for two groups of servo

motors involved in the execution of different sets of behaviors. Motors for head

and eye movements sh ∈ {1, . . . 7} are for instance needed for the behaviors

FollowFace,FollowToy or LookAround which are competitive, but not for Smile

or Sulk that are cooperative behaviors. Vice versa, motors for movements of the

mouth corners sm ∈ {8, . . . 11} are needed for Smile or Sulk and not for the other

behaviors. For behaviors not involving a group of servos the corresponding votes are

constantly set to zero. The votes of the other behaviors depend on MEXI’s current

perceptions and somehow reflect its current action tendency due to these perceptions

not taking into account its internal state.

The votes vsh,b for the behavior b = FollowFace and for b = FollowToy are set

to one when MEXI sees a human face (t0 and afterwards) or its toy respectively (t3
and afterwards). The behavior LookAround which lets MEXI look for interesting

things (e. g. human faces) corresponds to MEXI’s exploratory drive. It describes a

kind of default behavior for the head movement motors. Therefore, the votes vsh,b

for b = LookAround are constantly set to 0.5 and the gain is set to 1.0.

The behavior Smile only involves the motors for mouth movements. Since MEXI

by default should be friendly the corresponding votes vsm,b for b = Smile are set to a

high value of 0.8, when MEXI perceives a human face (starting at t0). When MEXI

classifies the human face as sad at t1, it adapts its own facial expression to a neutral

expression and no longer intends to smile. Hence, the votes vsm,b for Smile are set to

zero and remain there until MEXI sees its toy at t3 and wants to smile again due to

this perception (vsm,b = 0.8 at t3).

The gain values reflect MEXI’s action tendency due to its current internal state.

The weight combines gains and votes, i.e. internal and external action tendencies

and the influence shows which behavior is really executed (and to which extent in

the case of cooperative behaviors). The influence of LookAround is one until t0 and

MEXI is looking around since nothing else is seen. When MEXI’s communication

drive dcom increases also the gain for FollowFace gFF rises until dcom reaches its

upper threshold (thu = 1) and also gFF is set to one at t0. Since MEXI sees a face

at t0, also the weight of FollowFace becomes one and FollowFace is executed (its

influence is one) because its weight is now higher than that of LookAround. At

t1 MEXI detects the sad face of its human counterpart and stops smiling (vote of

Smile is set to zero, hence weight and influence become zero too). Since MEXI

now wants to distract the human from her sadness by playing with its toy, its own

PlayToy drive increases to one causing the gain for FollowToy to increase as well.

Since MEXI now wants to play, the communication drive starts decreasing faster

195

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

Vote

t1 t2 t3

Influence FollowFace

Communication
t0

Smile

FollowFace

FollowToy

Smile

t4

Time

Drive /
Emotion

Happiness

PlayToy

bsh
v , LookAround

Vote

FollowFaceFollowToy

Smile

bsm
v , LookAround

Influence FollowToy
LookAround

Gain FollowFace

Smile

FollowToy
0.5

LookAround

Fig. 4 Example Session

until it becomes zero at t2. Now the weight of LookAround is larger than that of

FollowFace and MEXI looks around (influence of LookAround = 1 from t2 to t3)

until at t3 the weigth of FollowToy is larger than that of LookAround, since MEXI

detects its toy at t3 and the corresponding vote vsh,FollowToy becomes one. Then also

the PlayToy drive and due to this also the gain of FollowToy start decreasing until

the drive is minus one (thl = −1) at t4. Since at t4 the communication drive has

reached its upper threshold (thu = 1), the gain of FollowFace is set to one and its

weight is the highest again resulting in execution of FollowFace after t4 (influence

= 1).

The emotion Happiness is set to one each time the influence of FollowFace or

FollowToy starts rising (t0, t3), i.e. the communication drive or the playing drive

starts being satisfied (δcom is set to -1). As result of the rising of the emotion

Happiness (threshold = 1) the gain value of the behavior Smile also is set to one

and MEXI starts smiling, because also the vote is one (t0 and t3). Happiness auto-

matically decreases caused by the respective excitation function (e.g. from t3 until

t4). This decrease becomes faster by setting khappy < −1, when MEXI receives cor-

responding percepts like a sad human face (t1). MEXI smiles until the weight of

Smile becomes zero because of MEXI’s percept (vsm,Smile = 0 at t1 and t4). Another

reason to stop smiling may be that the gain of Smile has decreased to zero because

of a corresponding decrease of Happiness due to its excitation function ehappy.

196

Integrating Emotional Competence into Man-Machine Collaboration

5 Conclusion

In this paper we presented the architecture of the robot head MEXI and how it sup-

ports emotional competence in human-robot cooperation. The paper concentrates

on two important aspects of emotional competence: how internal regulation mech-

anisms for emotions and drives can be realized and how adequate behaviors for

external emotion regulation as well as for reaction on human emotions can be incor-

porated. We presented MEXI’s software architecture and how it is used to realize its

actions without any explicit world model and goal representation. Instead MEXI’s

artificial emotions and drives maintained by the Emotion Engine are used to eval-

uate its percepts and control its future actions in a feedback loop. The underlying

Behavior System and the Emotion Engine are based on the behavior based program-

ming paradigm extending Arkin’s motor schemes to a multidimensional model of

reactive control. This architecture supports a constructive approach for synthesizing

and representing MEXI’s artificial emotions and drives rather than emulating human

ways of ”feeling”. MEXI integrates also components for emotion recognition com-

ponents from facial expression and natural speech. Based on these building blocks

MEXI can cooperate with humans in real-time by communication behavior, which

could be extended to other tasks by integrating appropriate actor facilities and ba-

sic behaviors into the Behavior System and the Emotion Engine. Our experiences

with MEXI on different public exhibitions and fairs show that MEXI, although re-

alizing only a restricted set of emotions and drives, attracts human spectators and

maintains their communication interest. However, it remains a question for psycho-

logical studies, how different humans react when they cooperate with emotionally

extended machines. We plan to investigate how the constructive approach of emo-

tions and drives for behavior control can be transferred to other application domains

than human-robot communication.

References

1. P. Salovey, J. D. Mayer, Emotional intelligence. Imagination, Cognition, and Personality, 9,

185-211.

2. W. Seidel, Emotionale Kompetenz. Gehirnforschung und Lebenskunst, SPEKTRUM

AKADEMISCHER VERLAG 2004.

3. H. Kobayashi, F. Hara, A. Tange, A basic study on dynamic control of facial expressions for

face robot, Proceedings of the International Workshop on Robots and Human Communication,

1994.

4. Robots are getting more sociable, MSNBC News, 2003,

http://www.msnbc.msn.com/id/3078973/

5. A. Takanishi, H. Miwa, Emotional control of emotion expression humanoid robot WE-4RII,

Workshop on Building Humanoid Robots (Humanoids 2004), Los Angeles CA, USA, Novem-

ber 2004.

6. R. Arkin, M. Fujita, T. Takagi, T. Hasekaawa, An ethological and emotional basis for human-

robot interaction, Robotics and Autonomous Systems 42 (2003) 191-201.

197

Natascha Esau, Lisa Kleinjohann and Bernd Kleinjohann

7. R. Arkin, Homeostatic Control for a Mobile Robot, Dynamic Replanning in Hazardous En-

vironments, Proceedings SPIE Conference on Mobile Robots, Cambrige, MAA, pp. 240-249,

1988.

8. L. Canamero, J. Fredslund, I show you how I like you - can you read it in my face?, IEEE

Transactions on Systems, Man and Cybernetics 31 (5), 2001.

9. S. S. Tomkins, Affect theory, in Approaches to Emotion, K. R. Scherer and P. Ekman (eds.),

Hillsdale, NJ: L. Erlbaum, pp. 163-195, 1984.

10. C. Breazeal, Affective Interaction between Humans and Robots, in J. Kelemen and P. Sosk

(editors), Proceedings of ECAL 01, Prague, pp. 582-591, Springer 2001.

11. N. J. Nilsson, Artificial Intelligence - A New Synthesis, Morgan Kaufmann Publishers, 1998.

12. Via Voice, http://www-306.ibm.com/software/voice/viavoice/

13. N. Esau, E. Wetzel, L. Kleinjohann, B. Kleinjohann, Real-Time Facial Expression Recognition

Using a Fuzzy Emotion Model, Proceedings of the IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE 2007), London, UK, July 2007.

14. A. Austermann, N. Esau, B. Kleinjohann, L. Kleinjohann, Prosody Based Emotion Recogni-

tion for MEXI, Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems

(IROS 2005), Edmonton, Canada, August 2005.

15. Alicebot, http://www.alicebot.org/

16. N. Esau, L. Kleinjohann, B. Kleinjohann, Integration of Emotional Reactions on Human Fa-

cial Expressions into the Robot Head MEXI. In: Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IEEE/RSJ IROS 2007), San Diego, USA, 29.

Okt. - 2. Nov., 2007.

198

Wolfgang Trumler, Sebastian Schlingmann, Theo Ungerer, Jun Ho Bahn, Nader
Bagherzadeh

Abstract Many-cores are on the cusp of becoming state-of-the-art processor tech-
nology for the next decade. To guarantee efficient communication between multiple
cores, a Network-on-a-Chip (NoC) is considered as an alternative to overcome the
limitations of the ubiquitous bus technology.

In this paper, we present an approach to further improve the routing in an NoC
with a self-optimized routing strategy. We extended the routers of a network to mea-
sure their load and to send an appropriate load information to their direct neighbors.
The load information is used to decide in which direction a packet should be routed
to avoid hot-spots. Evaluation results show a significant increase in the network
throughput. With the self-optimized routing, the NoC is capable of routing up to
two times more packets compared to the original routing algorithm proposed by
Lee and Bagherzadeh, 2006.

1 Introduction

on-a-Chip (NoC) [7] technology. NoC is used as an alternative to the ubiquitous bus
technology in order to facilitate communication among many cores. As the process
technology shrinks and more cores are integrated on the same chip, the current bus
approach for communication among cores will not be sufficient and a technology
such as NoC is needed.

Wolfgang Trumler, Sebastian Schlingmann, Theo Ungerer
Department of Computer Science, University of Augsburg, Eichleitnerstr. 30, 86159 Augsburg,
Germany, e-mail: {trumler, schlingmann, ungerer}@informatik.uni-augsburg.de

Jun Ho Bahn, Nader Bagherzadeh
Department of Electrical Engineering and Computer Science, University of California, Irvine, Cal-
ifornia, USA, e-mail: {jbahn, nader}@uci.edu

Please use the following format when citing this chapter:

In 2007 Intel announced a prototype 80-core tera-scale processor [11] using Network-

Processing, Volume 268; Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig,
Hartmut Schmeck; (Boston: Springer), pp. 199–212.

Self-optimized Routing in a Network on-a-Chip

Trumler, W., Schlingmann, S., Ungerer, T., Bahn, J.H. and Bagherzadeh, N., 2008, in IFIP International Federation for Information

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

In an NoC system, processor cores exchange messages using a network as trans-
portation system that is constructed from multiple point-to-point data links inter-
connected by routers such that messages can be relayed from any source module to
any destination module over several links by making routing decisions at the local
routers. NoCs apply message passing communication networks similar to massively
parallel systems. For NoCs, the advantage of a low latency communication, com-
pared to the off chip communication on high-speed channels among processors,
offers new possibilities but also new challenges for the routing in such networks.

There is only limited room for improvements to the topology of an NoC com-
pared to the 2D-mesh due to space and energy constraints on a chip. Therefore,
most NoCs employ a simple 2D-mesh for communication infrastructure. On the
other hand, significant efforts have been spent on the optimization of routing for
NoCs concerning both, the overall throughput and the average latency.

The O1TURN algorithm [18] for example has a provable near-optimal worst
case throughput. Another routing algorithm with good performance and deadlock
free routing is ROMM [14].

In this paper, we present an approach to increase the network throughput and
to lower the average latency based on the local load information of the nodes. The
nodes exchange their local load values with their neighboring nodes, which route
incoming packets based on this information. The basic idea of this self-organizing,
adaptive routing algorithm is inspired by the self-optimization algorithm [20] for
load balancing in large scale networks, which is based on the notion of the human
hormone system. The underlying architecture [13] for our algorithm, which does
not rely on virtual channels, has been developed at the University of California in
Irvine.

The artificial hormone system described in [20] piggy backs load information on
the outgoing messages. This information is extracted by the receiving node, which
decides wether to transfer load, in form of a service, to the origin of the message.
In this scenario the communication was constrained by the uniquely identified com-
munication partners of each service. We assumed that one service will not send the
message to all other services, but only one of its communication partners at a time.
This simulates the way information flows in object oriented software, where one
object can call methods of only a few other objects. Furthermore, it is similar to the
way hormones distribute their information to only those parts of the tissue which
have receptors for these specific hormones and thus can act on this information.

The communication pattern of the self-optimizing algorithm in this paper is more
related to the way information is distributed known from the process of morpho-
genese [21], first described by Turing in 1952. Turing mathematically described his
idea of messengers that diffuse into neighboring regions in the tissue of animals and
plants, used to organize the creation of regular structures. The concentrations of dif-
ferent messengers are responsible for the creation of the patterns of a zebras or the
regular leaf structure of woodruff for example.

The communication pattern of the NoC routers does not change over time nor
does the structure or the layout of the routers on the die change. In this sense the
self-optimization is more related to the findings of Turing. On the other hand, the

200

Self-optimized Routing in a Network-on-a-Chip

simple approach of local load values, without the complicated differential equations
of the morphogeneses, is more related to the artificial hormone system as desribed
in [20].

The remainder of this paper is structured as follows. The next section describes
the architecture of the underlaying hardware. In Section 3, the calculation of the
local load is described and the routing algorithm is explained in detail. Simulation
results are presented in Section 4 and related work is discussed in Section 5. The
paper closes with a conclusion and the description of future work in Section 6.

The network topology of the NoC is a 2D-mesh with NxM routers. Figure 1 shows
the architecture of a single router. The router consists of three subsections, the left,
the right, and the internal router.

The task of the internal router is to inject packets into the network. Packets that
arrived at their destination are also ejected by the internal router. The left router is
used to route packets to the left (west) and the right router routes packets to the right
(east), respectively. Both routers can route packets to the north as well as to the south
but there is no connection between the east and west direction. This assumption
divides the network into two separate networks where packets can go either to the
east or the west of a router, but there is no turning back in the horizontal routing
direction. This architectural approach guarantees the NoC to be dead-lock free [5].

Clock boosting was introduced to improve the performance of the NoC. A packet
consisting of multiple flits (flow control digits) can be transmitted at different clock
speeds. With clock boosting only the routing decision for the head flit is done at
normal clock speed. After the route for the packet is chosen, the body flits can be
routed with an increased clock speed. By multiplying the clock frequency more
than one body flit can be routed during a normal clock cycle. The clock boosting
can double or quadruple the basic clock frequency, allowing two or four body flits
to be routed at the same time.

The routing decision of a router is straight forward using a clockwise priority
scheme to select the packets for routing. Starting from the north (top) input channel
the router examines the head flit from the buffer and tries to set the route for this
packet if possible. If there is no head flit in front of the buffer or if the route can not
be set because the output channel is already occupied by another packet, the router
picks the next buffer in a clockwise order and repeats the aforementioned steps.
More details about the clock boosting and the routing decision can be found in [13].

The internal FSM of the router is easy to implement but does not take the current
load situation of the network into account. Our approach is to improve the routing
decision by considering the current load of the neighboring routers, finding routes
to avoid hot-spots. Furthermore, when the original algorithm stops routing due to a
congested network, our algorithm can use alternative routes, bypassing the heavily
loaded routers, which leads to a higher overall network throughput.

201

2 Basic Router Architecture

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

Fig. 1 Architecture of a router

3 Routing Algorithm

Every router performs a routing decision whenever a packet arrives. The routing
decision consists of two consecutive steps. First, a routing function creates a set of
possible output channels (next destinations) for a packet. Afterwards, the selection
function calculates quality values for all possible routes and selects the most appro-
priate one for the routing of the packet.

In the current setup, the routing function creates a set with all nodes that lead
to the desired direction of the packet. For packets going from west to east (right
direction) the set may contain the north, west, and south channels. For packets going
from east to west (left direction) possible output channels can be north, east, and
south, respectively. If a packet has to be routed in south or north direction only, this
desired direction is used for the routing.

The local load of a router is propagated to its neighbors so they can decide if
the router is a good choice to route packet. The local load is not used for the local
routing decisions but it is crucial for the routing decision of the neighboring routers.
The propagation of the load values is described in Section 3.2.

202

Self-optimized Routing in a Network-on-a-Chip

3.1 Self-Optimization-Algorithm

3.1.1 Selection Function

The Self-Optimization-algorithm calculates the quality of a possible route based on
Equation 1. To yield a load value in the range of 0 to 100 all parameter values are
normalized.

quality = direction−%of remaining flits−4∗ pload (1)

The first value (direction) is a sort of bonus if the route leads to the destination
of the packet. A value of 200 is added for a route heading towards the destination
and 0 for a route which leads the packet farther from its target.

The value %of remaining flits expresses the percentage of a packet that must still
be sent on the selected output channel. If there is currently a route set for a packet,
the amount of the remaining flits of the packet is divided by the packet length. This
value is used to penalize a route, if there is already a packet on that route. The
amount of remaining flits is used to give an idea of how long the route will be
occupied.

The pload value is the load value of the neighboring router in the desired direc-
tion. The calculation of the pload value is described in Section 3.2. The propagated
load of the considered direction (pload) is multiplied by four and subtracted from
the other values. The higher the load of the neighboring routers, the less attractive
is the route in that direction.

3.1.2 Calculating the Load of a Router

The SO-algorithm tries to avoid hot-spots by spreading the offered load as good as
possible to the available routers as long as free capacity is available. The load value,
which is also in the range from 0 to 100, is used for the calculation of a channel’s
quality. The load calculation of the SO-algorithm uses the utilization of the buffers
as a degree for the load of a router. The more the buffers are filled with flits, the
higher is the load of a router. Therefore, the load can be calculated by the fraction
of currently available flits for the available buffer size.

load =
local

maxload
∗100 (2)

The value local is the sum of the flits in the input buffers of a router. The amount
of flits from injection buffers are limited by the capacity of an input buffer, because
the injection buffers are assumed to be unlimited for simulation purposes. The max-
imum utilization of a router, maxload, is reached if all input buffers are completely
filled with flits.

203

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

Fig. 2 Propagation scheme for the left router

To propagate the local load, a router sends the load value to its neighboring routers.
Therefore, the overall load of a router is calculated and then propagated to the neigh-
bors.

The propagated load value, pload, not only includes the local load, but also the
load values of the surrounding routers. The information of the surrounding routers
is used to increase or decrease the local load of a router. This guarantees that the
load information of a heavily loaded router is not only sent to its direct neighbors
but is spread from the center of a possible hot-spot to the surrounding parts of the
network. The closer a router is located to a hot-spot the higher is the propagated
load value, which is used to decide if a packet should be routed to this node or not.

The calculation of the value pload is shown in Equation 3. Two-thirds of pload
are taken from the local load value load. One third of the propagated load depends
on the load of the neighboring routers.

pload =
1
3

(
2∗ load +

∑ pload(dir)
|pload(dir)|

)
(3)

The load that is propagated into one direction depends on the load of the routers
from the possible direction that can be used to route a packet. For example, the load
of the left router (see Figure 2) , the router that can route either to the north, south,
or west, takes the load values from these three neighboring routers and sends this
information to the right (east) router. Depending on the direction, the pload value
incorporates the load value of up to three neighboring routers. For the pload value
propagated to the south of the right router only the load information from the north
and west router is taken into account, because the routers can not route a packet
back to the direction where it came from. Thus, the only possible routes are to the
north and west.

204

3.2 Load propagation

Self-optimized Routing in a Network-on-a-Chip

4 Evaluations

We conducted extensive experiments with different network sizes ranging from 4x4
up to 16x16. Next, we will describe the traffic patterns used for the generation of
the network load and discuss the results for a 4x4 and 8x8 2D-mesh network in
comparison to the results of the design from the University of California in Irvine.
Afterwards, we compare the performance gain of the network in terms of increased
network throughput.

We evaluated our algorithms with four different traffic patterns as proposed in [7]
(Chapter 9). We used the same four traffic patterns as they did at the UCI to have a
basis for a direct comparison of the results.

The traffic patterns used are matrix transpose, bit reverse, bit complement, and
uniform random. The target address of a packet is generated out of the source ad-
dress of a node by applying one of the aforementioned traffic patterns. For these
simulations, the width and height of the 2D-mesh network is assumed to be a power
of two. Without this assumption some of the traffic patterns might produce invalid
destination addresses.

For every simulation setup, we conducted multiple runs and calculated the aver-
age network latency to minimize the impact of possibly good circumstances in one
simulation run. The network had a warm-up phase of 1000 cycles at the beginning of
every simulation. The measurement was done during 100,000 cycles following the
warm-up phase. The simulation stopped if the average delay of the packets exceeded
a threshold of 200 cycles.

The injection of the flits was chosen to be the worst case, which means, that all
nodes inject their flits at the same time resulting in a high network load. Assuming
that the nodes would distribute the flit injection over time, the results are even better
than shown in the charts.

The packet injection rate can be calculated from the injection rate of the flits. In
our simulations, we used a fixed packet length of nine flits (one head flit and eight
body flits). Therefore, the packet injection rate can be calculated by dividing the flit
injection rate by nine.

4.2 4x4 NoC

The first simulations were done on a 4x4 2D-mesh with the aforementioned traffic
patterns. The results are shown in Figure 3. The charts show the generated traffic
on the x-axis and the measured average latency on the y-axis. The generated traffic
is given in flits per node per cycle which is a value ranging from 0.05 to 1. If the

205

4.1 Traffic generation

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

generated traffic is 1, a new flit is injected into the internal buffer of the routers
at every node in every cycle. If the traffic is below 1, there are a few cycles delay
between the injection of new flits, e.g. at 0.5 a new flit is injected every second cycle.

For a direct comparison of the results from Irvine and our results, we plotted
all the data into one chart. Every chart shows the results with 1x, 2x, and 4x clock
boosting for both.

Concerning the matrix transpose traffic pattern there is hardly any improvement
of the SO-algorithm compared with the original algorithm. Both can route all pack-
ets with a nearly constant delay up to the maximum load, if the clock boosting is
used. The saturation point of the network seems to be about the same for both algo-
rithms.

The bit reverse traffic pattern first shows considerable differences. The saturation
point for the SO-algorithm is about 0.65 and about 0.45 for the original algorithm
without clock boosting. The maximum throughput of the SO-algorithm is even bet-
ter for the 2x clock boosting. While the original algorithm begins to saturate at about
0.8, the SO-algorithm routes all packets with nearly the same delay up to the maxi-
mum injection rate. The results with 4x clock boosting are again the same for both
algorithms.

Bit complement traffic shows interesting results in terms of the algorithms sat-
uration points. The original algorithm has a saturation point of 0.35, 0.5, and 0.85,
respectively. The SO-algorithm first increases the latency, which creates a kind of
plateau phase. This plateau has a different length for different clock boosting values.
The plateau also appears at the 4x clock boosting, but the SO-algorithm can route
all the packets with only a slight latency increase up to the maximum injection rate
and does not reach the saturation point.

The uniform random traffic pattern seems to be the hardest of all four traffic
patterns, because the saturation point of the original algorithm is reached earliest.
The SO-algorithm shows very good behavior especially for the 2x and 4x clock
boosting. In both cases, the SO-algorithm does not reach the saturation point but
can route all packets up to the maximum injection rate. The uniform random traffic
pattern shows similar behavior for the SO-algorithm than in the previous traffic
pattern. There are two plateaus for the 1x and 2x clock boosting at different injection
rates. The first plateau is also visible for the 4x clock boosting but the second one
does not appear.

The explanation for the appearance of the plateaus can be derived from the way
the SO-algorithm selects the routes for the destination of a packet. As long as there
are enough good alternative routes to the destination, the SO-algorithm automati-
cally selects the next best (shortest) path. For example, a packet at the node (1,1)
should be routed to (3,2) and if the buffers of the router to the east (2,1) are filled,
the SO-algorithm routes the packet to (1,2) instead. If the injection rate increases,
more buffers are completely filled and more congestions arise in the network. At
the same time, since the quality of the alternative routers are also getting worse, the
SO-algorithm selects routes by avoiding both shortest but heavily loaded routes.

If the SO-algorithm starts routing packets not on one of the shortest paths, the
average latency increases due to the additional hops and the possible congestions.

206

Self-optimized Routing in a Network-on-a-Chip

Fig. 3 Simulation results for a 4x4 2D-mesh

On the other hand, the alternative routes around heavily loaded nodes give the SO-
algorithm the ability to defer the ultimate saturation point to a much higher injection
rate and in most cases it can handle the maximum injection rate.

4.3 8x8 NoC

We also conducted experiments with 8x8 2D-mesh networks and the four traffic
patterns to see how the SO-algorithm performs in larger networks.

The amount of injected flits depends on the amount of nodes. Therefore, if the
number of nodes is doubled in each dimension, the amount of nodes in the network
increases exponentially and so does the amount of flits injected into the network.
On the other hand, the exponential growth in the network size might offer more
alternative routes for the SO-algorithm to be selected as routes for the packets.

The results of the simulations of an 8x8 2D-mesh are shown in Figure 4 for 1x,
2x, and 4x clock boosting. The original algorithm reaches its saturation point for all
traffic pattern at an injection rate considerably below the maximum injection rate.

With the matrix transpose traffic pattern, the SO-algorithm performs much better
than the original algorithm. Especially with 4x clock boosting, where the original
algorithm saturates at about 0.65, the SO-algorithm can route packets up to the
maximum injection rate with a low average latency. The same applies for the bit

207

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

Fig. 4 Simulation results for an 8x8 2D-mesh

reverse traffic pattern where the original algorithm performs even worse while the
SO-algorithm performs slightly better than with the matrix transpose traffic pattern.

The bit complement seems to be challenging for both, the original and the SO-
algorithm. In this case the SO-algorithm does hardly outperform the original algo-
rithm, in contrast to the other three traffic patterns. We had similar results for the 4x4
network. One of the influencing factors seems to be the network architecture, which
is chosen to avoid dead-locks by design. Because of the two separated networks for
the horizontal directions, the SO-algorithm does not offer enough choices for alter-
native routes. A packet cannot be routed back in horizontal direction in contrast to
the vertical direction where a packet can go back and forth if the packet has been
routed horizontally, at least once after a vertical transfer.

In the lower right chart of Figure 4 the results of the uniform random traffic
pattern are depicted. In this case, the SO-algorithm can handle the double injection
rate than the original algorithm before it reaches the saturation point. The difference
with the bit complement traffic pattern is due to better distribution of the traffic
over the whole network, which seems to be the favored kind of traffic for the SO-
algorithm.

The plateaus known from the 4x4 network can be observed at all four charts of
8x8 network. As already mentioned, this behavior occurs when the SO-algorithm
starts to use alternative routes, which are not on the shortest path to the destination.

208

Self-optimized Routing in a Network-on-a-Chip

4.4 Performance comparison

To compare the network throughput of the original and the SO-algorithm Tables
1 and 2 show the throughput gain in percentage for the 4x4 and 8x8 network, re-
spectively. The original algorithm’s results are taken as base for the calculation of
the throughput gain. Therefore, a value of 0% means that both algorithms perform
equally and a value of 100% means that the SO-algorithm performs twice as good
as the original algorithm.

For an algorithm that reaches its saturation point, an average injection rate la-
tency of 50 cycles was taken for the base calculation. When the original algorithm
saturates and the SO-algorithm does not, the throughput gain becomes much higher
than the calculated value shown in the tables. This is because in all these cases the
average latency of the SO-algorithm is much better than 50 cycles. These values are
marked with a * to denote that the original algorithm saturated in contrast to the
SO-algorithm.

Table 1 Throughput gain for a 4x4 NoC

Traffic Pattern 1x 2x 4x
Matrix Transpose 13% 0% 0%

Bit Reverse 41% * 23% 0%
Bit Complement 8% 75% * 20%
Unifrom Random 37% * 96% * 35%

The throughput gain for the 4x4 network ranges from 0% for the matrix transpose
to more than 96% for the uniform random traffic pattern. As mentioned before in
the case of the uniform random traffic pattern the throughput gain is even higher due
to the fact that the original algorithm has a 50 cycles delay for the chosen injection
rate while the SO-algorithm has an average delay of about 21 cycles. For the 8x8
2D-mesh network, the throughput gain ranges from 0% for the bit complement up
to 127% for the uniform random traffic pattern.

Table 2 Throughput gain for a 8x8 NoC

Traffic Pattern 1x 2x 4x
Matrix Transpose 37% 35% * 53%

Bit Reverse 73% 58% * 63%
Bit Complement 7% 0% 8%
Unifrom Random 127% 90% 103%

The tables confirm our initial assumption that the SO-algorithm will perform
better for larger networks due to the larger amount of possibles routes. The bit com-

209

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

plement is the sole exception to this assumption. Further investigations are needed
to better understand the reasons for the poor throughput gain in this case.

5 Related Work

In designing Network-on-a-Chip (NoC) systems, there are several issues to be con-
sidered, such as topology, routing algorithm, performance, latency, and complexity.
Because of its flexibility, architectures based on NoC are getting more attention. As
a feasible topology in NoC systems, the mesh is getting popular for its modularity;
it can be easily expanded by adding new nodes and links without any modification
of the existing node structure.

Another issue in NoC environment is the routing algorithm. In terms of deliver-
ing mechanism, wormhole routing has increasingly been advocated as a method of
reducing message routing latency. In wormhole routing, a packet is decomposed into
flits or flow control units, and the packet follows through the network one flit after
another. On the other hand, in terms of the way of selecting a path among the sets
of possible paths from source to destination, the routing algorithms are classified as
deterministic/oblivious and adaptive ones [5]. The oblivious/deterministic routing
algorithms choose a route without considering any information about the network’s
present condition, resulting in relatively simple design complexity. Adaptive rout-
ing algorithms use the state of the network such as the status of a node or link,
the status of buffers for network resources, or history of channel load information.
Even though the adaptive routing algorithms utilize the flexibility in routing paths,
the hardware design complexity is usually increased. Depending on the degree of
adaptivity, minimal adaptive and fully adaptive routing algorithms are refined. DOR
(dimension-ordered routing) [19], ROMM [14], and O1TURN [18] are examples of
deterministic or oblivious algorithms. Some researchers have developed better per-
formance routing algorithms using adaptive routing algorithms [10, 4, 6, 2, 9, 8].
The SO-algorithm is an adaptive routing algorithm that does not use virtual chan-
nels.

The adoption of virtual channel (abbreviated to VC) has been prevailing because
of its versatility. By adding virtual channels and proper utilization of their chan-
nels, deadlock-freedom can be easily accomplished. Network throughput can be
increased by dividing the buffer storage associated with each network channel into
several virtual channels. By proper control of virtual channels, network flow control
can be easily implemented [3]. Also to increase the fault tolerance in a network, the
concept of virtual channel has been utilized [1, 12]. However, in order to maximize
its utilization, allocation of virtual channels is a critical issue in designing routing
algorithms [22, 16]. Furthermore, the buffers of the virtual channels are very ex-
pensive in terms of chip size. The extra chip size needed for the additional logic of
our SO-algorithm is negligible compared to the chip size needed for the buffers of
virtual channels and the logic for the channel allocation.

210

Self-optimized Routing in a Network-on-a-Chip

A similar approach, using stress values, is described in [15]. The stress values
are exchanged between the direct neighbors in the network. With our calculations
the load value is not only exchanged with the direct neighbors, but diffuses to the
surrounding area of load value’s source. Furthermore, there are less choices for our
algorithm to chose the best routes due to the two separated networks, which guar-
antee deadlock free routing by design.

6 Conclusion and Future Work

In this paper we presented a routing algorithm for an Network-on-a-Chip that yields
a significant throughput gain for 2D-mesh networks. The SO-algorithm calculates
the load of a router based on the amount of flits in the buffers. With this approach
the network throughput can be significantly increased. The throughput gain is up
to 127% compared to the original algorithm. The throughput gain is highest for the
uniform random traffic pattern, which in our opinion is especially relevant for our
current research where we will investigate task allocation mechanisms on an NoC.
The expected traffic in such a dynamic and steadily changing environment will lead
to a traffic pattern comparable to the uniform random.

Based on our latest results, we have plenty of ideas to improve the SO-algorithm.
The first will be to combine the SO-algorithm with another approaches that is de-
scribed in [17]. The idea is to use the SO-algorithm as a base value for the local load
and to increase or decrease it by the amount of I/O operations a router can process
during a cycle. If the input channels of a router are filled with flits, the router is
loaded to a level of 100% (concerning the SO-algorithm) but the situation is aggra-
vated if the router is blocked and cannot perform any read or write operations. On
the other hand, if the router is full but can transfer a maximum number of flits, it
might be a better choice.

References

1. S. Chalasani and R. V. Boppana. Fault-tolerant wormhole routing algorithms for mesh net-
works. IEEE Trans. Comput., 44(7):848–864, 1995.

2. G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE Trans. Parallel Distrib.
Syst., 11(7):729–738, 2000.

3. W. J. Dally. Virtual-channel flow control. In 17th annual international symposium on Com-
puter Architecture (ISCA ’90), pages 60–68, New York, NY, USA, 1990. ACM.

4. W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans. Comput., 36(5):547–553, 1987.

5. W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers, 2004.

6. J. Duato. A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans.
Parallel Distrib. Syst., 4(12):1320–1331, 1993.

7. J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks – An Engineering Approach.
Morgan Kaufmann Publishers, 2003.

8. C. J. Glass and L. M. Ni. Maximally fully adaptive routing in 2D meshes. In Proceedings
of the 1992 International Conference on Parallel Processing, volume I, Architecture, pages
I:101–104, Boca Raton, Florida, 1992. CRC Press.

211

W. Trumler, S. Schlingmann, T. Ungerer, J. Ho Bahn, N. Bagherzadeh

9. C. J. Glass and L. M. Ni. The turn model for adaptive routing. J. ACM, 41(5):874–902, 1994.
10. J. Hu and R. Marculescu. Dyad - smart routing for network-on-chip. In 41-st Annual Conf.

on Design and Automation, pages 260–263, 2004.
11. Intel Corporation. Intel’s teraflops research chip. http://download.intel.com/research/platform/

terascale/teraflops/ FINAL TeraflopsResearchChip Overview.pdf, November 2007.
12. F. Jipeng Zhou; Lau. Adaptive fault-tolerant wormhole routing with two virtual channels in

2d meshes. Parallel Architectures, Algorithms and Networks, 2004. Proceedings. 7th Interna-
tional Symposium on, pages 142–148, 10-12 May 2004.

13. S. E. Lee and N. Bagherzadeh. Increasing the throughput of an adaptive router in network-
on-chip (noc). In 3rd International Conference on Hardware-Software Codesign and System
Synthesis (CODES+ISSS), Seoul, Korea, Oktober 22-25 2006. ACM.

14. T. Nesson and S. L. Johnsson. ROMM routing on mesh and torus networks. In Proc. 7th
Annual ACM Symposium on Parallel Algorithms and Architectures SPAA’95, pages 275–287,
Santa Barbara, California, 1995.

15. E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. Load distribution with the proximity con-
gestion awareness in a network on chip. In DATE ’03: Proceedings of the conference on
Design, Automation and Test in Europe, pages 11126–11127, Washington, DC, USA, March
2003. IEEE Computer Society.

16. H. Rezazad, M.; Sarbazi-azad. The effect of virtual channel organization on the performance
of interconnection networks. Parallel and Distributed Processing Symposium, 2005. Proceed-
ings. 19th IEEE International, pages 8 pp.–, 4-8 April 2005.

17. S. Schlingmann. Selbstoptimierendes routing in einem network-on-a-chip. Master’s thesis,
University of Augsburg, September 2007.

18. D. Seo, A. Ali, W.-T. Lim, and N. Rafique. Near-optimal worst-case throughput routing for
two-dimensional mesh networks. In 32nd International Symposium on Computer Architecture,
2005. ISCA ’05, pages 432–443, Madison, Wisconsin USA, 4-8 June 2005.

19. H. Sullivan and T. R. Bashkow. A large scale, homogeneous, fully distributed parallel ma-
chine, i. In ISCA ’77: Proceedings of the 4th annual symposium on Computer architecture,
pages 105–117, New York, NY, USA, 1977. ACM.

20. W. Trumler, T. Thiemann, and T. Ungerer. An artificial hormone system for self-organization
of networked nodes. In IFIP Conference on Biologically Inspired Cooperative Computing,
pages 85–94, Santiago de Chile, August 2006. Springer-Verlag.

21. A. M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences, 237(641):37–72, August 1952.

22. A. S. Vaidya, A. Sivasubramaniam, and C. R. Das. Impact of virtual channels and adaptive
routing on application performance. IEEE Trans. Parallel Distrib. Syst., 12(2):223–237, 2001.

212

On Robust Evolution of Digital Hardware

Tobias Knieper, Bertrand Defo, Paul Kaufmann, and Marco Platzner

Abstract In this paper we investigate whether multi-objective evolution of digital
hardware components has advantages over single-objective evolution in terms of
convergence and robustness. To that end, we experimentally compare a standard
genetic algorithm to several multi-objective optimizers on a set of test problems. The
results show that, for more complex test problems, the multi-objective optimizers
TSPEA2 and NSGAII indeed outperform the single-objective genetic algorithm as
they more often evolve correct circuits, and mostly with less computational effort.

1 Introduction

Self-adaptive and self-optimizing systems are able to react to changes in the en-
vironment and the internal system state autonomously. Systems with such self-X
properties find applications in, for example, highly complex scenarios where clas-
sical methods fail, or in scenarios which require autonomous operation for long
mission periods. To design such systems, often principles from biology or sociol-
ogy are transferred into engineering domains and combined with modern hardware
and software technology to form what is denoted as organic computing.

In our work, we focus on organic computing methods to develop hardware
components. More than a decade ago, the emergence of reconfigurable hardware
architectures together with natural computing methods gave rise to the field of
biologically-inspired hardware, which includes several areas [1]: Evolvable hard-
ware denotes the combination of evolutionary algorithms with reconfigurable hard-
ware to construct self-adaptive and self-optimizing hardware systems. Embryonics
tries to apply developmental processes as found in multicellular organisms to design
fault-tolerant circuits with self-repair and self-healing capabilities. Immunotronics
uses principles of the immune system to support fault tolerance and protection for

University of Paderborn
e-mail: {tknieper, bertrand, paul.kaufmann, platzner}@upb.de

Please use the following format when citing this chapter:
Knieper, T., Defo, B., Kaufmann P. and Platzner, M., 2008, in IFIP International Federation for Information Processing, Volume
268; Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck;
(Boston: Springer), pp. 213–222.

Tobias Knieper, Bertrand Defo, Paul Kaufmann, and Marco Platzner

hardware circuits. Finally, neural hardware denotes hardware implementations of
models of the nervous system.

We concentrate on evolvable hardware, a term coined by de Garis [2] and Higuchi
[3] in 1993. The common denominator of all evolvable hardware approaches is the
application of evolutionary algorithms directly at the hardware level. Here, hardware
means both digital and analog electronic circuits, and the hardware level comprises
all models of hardware, from configuration bitstreams for reprogrammable devices
over netlists of gates to behavioral descriptions. In a sense, evolutionary algorithms
exploit a form of collaborative computing as they keep a set of individuals and
try to improve them over generations by applying biologically-inspired operators
such as selection, mutation, and crossover. Especially crossover allows to pass on
information between individuals.

Most work in evolvable hardware has been focusing on evolving functionally
good or correct components. In contrast, we consider several objectives and include
also the required hardware area and the resulting circuit speed in the evolution-
ary process. While a few previous approaches applied two-stage fitness functions
[4, 5], we employ multi-objective evolutionary algorithms (MOEAs). There are two
motivations for using MOEAs in evolvable hardware design: First, MOEAs are de-
signed to keep diversity in the population and generate Pareto sets of circuits. Au-
tonomous systems can switch between the solutions in the Pareto set in order to
react on quickly changing resource situations and performance goals [6]. Second,
MOEAs can possibly be used for a faster and more robust evolution of functionally
good circuits. The argument is that putting too much selection pressure on only one
objective (the functional quality of the circuit), instead of keeping the population di-
verse with respect to other objectives (area and speed of a circuit), one might more
easily get stuck in the optimization process and, hence, need a higher computational
effort to evolve components with acceptable functional quality.

In this paper, we want to investigate whether multi-objective evolution of dig-
ital hardware components has advantages over single-objective evolution in terms
of convergence and robustness. To that end, we experimentally compare a standard
genetic algorithm (GA) to several recent multi-objective evolutionary algorithms on
a set of test problems. The paper is structured as follows: In Section 2, we present
the hardware representation model that is used to encode circuit individuals, and
the computation of objectives. The different evolutionary algorithms including four
multi-objective optimizers are discussed in Section 3. Section 4 shows the test prob-
lems, the experimental setup and the results, before Section 5 concludes the paper.

2 Hardware Representation Model and Metrics

Cartesian genetic programming (CGP) is a very popular hardware representation
model introduced in [7]. CGP is a structural hardware model, where a circuit is
formed by combinational logic blocks arranged in a two-dimensional array and an
interconnect (wires) between the blocks. Figure 1 presents the CGP model and its

214

On Robust Evolution of Digital Hardware

parameters. The array consists of nc × nr combinational blocks, ni primary inputs,
and no primary outputs. The primary inputs can be connected to the inputs of any
logic block in the array. A logic block in column j has nn inputs that can be con-
nected to the columns j− l, . . . , j−1 of the array and to the primary inputs, respec-
tively. This ensures that no combinational feedback loops are generated. A combi-
national block implements one out of n f different logic functions of its inputs.

An individual is defined by its chromosome (genotype). The length of the chro-
mosome is given by nc · nr(nn + 1) + no. Each of the logic blocks in the array is
defined by nn + 1 values, one for each input and one for the logic function. Addi-
tionally, an no-tuple of values selects the block outputs that are connected to the
primary outputs of the array.

nc

nn

ni nr

f4

f5

f7

f8

f11

f10

f17
f21

f22

f23

f6

f9

f20

pi1

pi2

pi3

pi0

po24

po25

no

Fig. 1 The cartesian genetic programming model for hardware representation with its main pa-
rameters

The main reason for the popularity of the CGP model is its closeness to the
architectures of field-programmable reconfigurable hardware arrays (e.g., FPGAs
or coarse-granular arrays). The block functions can be set to simple two-input gates,
to nn-input lookup tables, or to more complex word-based arithmetic operators. The
interconnect can model bit wires or busses. While the original CGP model implicitly
encodes block placement, more recent CGP variants rely on only one row of blocks,
i.e., nr = 1 and l = nc. Routing is not encoded in the CGP model, mainly to keep
the genotype (chromosome length) short and, thus, to increase the efficiency of the
evolutionary operators.

Generally, the genotype has to be mapped to a corresponding phenotype for eval-
uating the fitness. The phenotype represents the actual circuit and is achieved from
the genotype by removing all blocks of the array that do not contribute to the out-
puts. Note that there might still be redundancy in the phenotype. An important previ-
ous result with the CGP model is that propagating redundant and currently unused
structures inside the chromosomes through the search process of the evolutionary
algorithm can increase the speed of convergence [7].

In this paper, we are interested in evaluating the circuits’ fitness with regard to
three objectives: the functional quality, the speed of the circuit, and the required

215

Tobias Knieper, Bertrand Defo, Paul Kaufmann, and Marco Platzner

hardware area. Accordingly, we have to define three metrics to evaluate circuit fit-
ness. Following related work in evolvable hardware, we use logic and arithmetic
functions as test problems [8]. As we know the correct outputs for all input value
combinations for these functions, we determine the functional quality as reciprocal
of the summarized square error distances between the output vectors of an evolved
individual c and a correct function c∗:

f (c) =
1

1+ 1
N ∑N

i=1 ham(c∗(i),c(i))2
, (1)

where N denotes the number of test vectors and ham refers to the Hamming
distance of two bit vectors. A correct circuit receives a functional quality of one.

We estimate the delay of a circuit by the number of wires or logic blocks on the
longest path. Given the CGP model, the delay is in the range {0, . . . ,nc +1}. A delay
of zero means that the longest path of the circuit connects an input directly with an
output. A delay of nc means that the longest path traverses all logic blocks of the
model, whereas a delay of nc + 1 indicates that none of the outputs is connected to
an input. The fitness with respect to circuit speed is determined as:

speed(c) = 1− delay(c)
nc +1

(2)

The speed metrics equals one for the fastest possible circuit (a circuit that maps
primary inputs directly to primary outputs) and zero for a circuit that has no con-
nection at all from primary inputs to primary outputs.

The number of logic blocks used by a circuit c, denoted as used blocks(c), is
in the range {0, . . . ,nc · nr}. Based on this value, we define a circuit’s fitness with
respect to area as:

area(c) = 1− used blocks(c)
nc ·nr

(3)

A circuit of minimal size, i.e., a circuit not using any logic block, receives an area
of one, a circuit that utilizes all available logic blocks has an area of zero.

3 Multi-objective Optimizers

In this section, we review the multi-objective evolutionary optimizers SPEA2, TS-
PEA2, NSGAII, and µGA that are compared in our experiments. As a reference al-
gorithm, we use a standard single-objective genetic algorithm (GA). The parameters
for GA are set as follows: The top 5% of the individuals are selected and transferred
without any modification to the next generation. Then, we apply two-stage binary
tournament as selection scheme, followed by a two-point crossover with a recom-
bination probability of 90%, and mutation. We choose the mutation rate such that

216

On Robust Evolution of Digital Hardware

only one combinational block or wire is mutated each time the mutation operator is
applied. Each recombined child is mutated exactly once.

SPEA2 is a recent multi-objective evolutionary optimizer introduced by Zitzler
et al. [9]. SPEA2 maintains two sets of individuals: an archive that contains non-
dominated individuals and a breeding population. In each generation, the two sets
are merged and the fitness of the individuals is evaluated. The non-dominated in-
dividuals are then copied to the new archive. If the archive exceeds a predefined
maximum size, SPEA2 applies a nearest neighbor density estimation technique to
thin out clusters on the Pareto front. The fitness assigned to an individual consid-
ers thenumber of individuals it dominates (the dominance count), the number of
individuals that are dominators (the dominance rank), and a density estimate based
on the k-th nearest neighbor method. All individuals undergo a binary tournament
selection which selects parents for recombination and mutation.

TSPEA2 is an algorithm we have devised in order to increase selection pressure
on one objective while trying to keep diversity [6]. This should be beneficial for
evolving circuits with a correctness property, where we will not be satisfied with
a circuit unless the functional quality reaches a predefined level. Both SPEA2 and
TSPEA2 use an archive and a breeding population and a selection scheme based on
Pareto dominance ranking. TSPEA2, however, checks as a first selection rule in a
binary tournament whether one of the two individuals dominates the other regarding
the main objective. TSPEA2 has been motivated by an earlier algorithm, MO-Turtle
GA presented by Trefzer et al. [10], that preferred a main objective over several
other objectives during the evolution of analog circuits.

NSGAII was presented by Deb et al. in [11]. NSGAII separates the population
into a hierarchy of Pareto fronts. The first level Pareto front is formed by the non-
dominated individuals. These individuals are then removed from the population,
and the second level Pareto front is formed by the now non-dominated individuals,
and so on. A new elite population is filled by incrementally adding these Pareto
fronts, starting with the level one front. In case the addition of the next level Pareto
front exceeds the population’s capacity, a density metric is used to select among the
individuals of that front. A breeding population is created by using a standard GA
scheme. Here, the selection operator takes the hierarchical Pareto front information
and the density metric into account to achieve both diversity and a minimal distance
to the optimal Pareto front.

µGA follows the original idea of Goldberg [12] who observed that a small num-
ber of individuals in a population is often sufficient for a converging optimization
process. Consequently, he suggested an optimization scheme where a GA operates
on a very small population. The situation in which all individuals have similar chro-
mosomes is called nominal convergence. If such a nominal convergence is reached,
the search process is relaxed by inserting randomly initialized individuals into the
population. In [13], Coello Coello and Pulido combined the idea of Goldberg with
the Pareto front diversity technique of Knowles and Corne [14]. Their µGA algo-
rithm relies on three populations: an external archive population which contains
non-dominated individuals of high diversity, the population memory which corre-
sponds to the classical GA breeding population, and a non-replaceable population

217

Tobias Knieper, Bertrand Defo, Paul Kaufmann, and Marco Platzner

which carries arbitrarily initialized individuals for the case of nominal convergence.
In each step, a standard GA is applied on a small set of randomly selected individ-
uals from the breeding and the non-replaceable population. After reaching nominal
convergence, the best individuals are copied to the breeding and the external pop-
ulation. After several iterations of this scheme, a part of the breeding population is
replaced by non-dominated individuals from the external population.

4 Experiments and Results

We have applied the different evolutionary optimizers to the following commonly
used benchmarks for evolving digital circuits [15, 16, 5]: the 6 and 7 even parity
function, 2+2 and 3+3 adders, and 2×2 and 3×3 multipliers. For the experiments,
we have configured the CGP model as a single line of two-input gates (nodes). For
the 6-parity function, the chromosome consists of 12 nodes, for the 7-parity func-
tion of 15 nodes, for the 2 + 2 adder and 2× 2 multiplier of 50 nodes, and for the
3+3 adder and 3×3 multiplier of 200 nodes. As for the reference GA, the MOEAs
rely on a two-point crossover with a recombination probability of 0.9. In each new
individual, a single gene is mutated by modifying either the logic function or an
input connection. The function set for the nodes is not restricted for the adder and
multiplier experiments, i.e., the node function can be an arbitrary function of two in-
puts. For the parity experiments, however, the node function set has been restricted
to AND, NAND, OR and NOR. Particularly, the XOR logic function is excluded, as
otherwise the evolution of correct parity functions is not a challenge. All experi-
ments have been conducted using the MOVES framework [17] for multi-objective
evolutionary optimization of digital circuits.

As an example result, Figure 2 displays the development of the average func-
tional quality for the 2×2 multiplier circuit. For this test problem, TSPEA2 shows
the fastest convergence, followed by NSGAII, GA, SPEA2, and µGA. This result
clearly shows that some multi-objective optimizers outperform the standard single-
objective GA in evolving functionally correct circuits.

As we are interested in the asymptotical behavior of the algorithms regarding the
functional quality of the evolved circuits, we have conducted several optimization
runs for each test problem. We have stopped an optimization run when a correct
circuit has been evolved. Otherwise, we have stopped the evolution after a prede-
fined number of fitness evaluations. For the parity function this limit has been set to
14 ·106 fitness evaluations, for the 3×3 multiplier to 6 ·106 fitness evaluations, and
for all other experiments to 20 ·106 fitness evaluations.

We use two metrics to compare the algorithms. The first is the number of suc-
cessfully evolved circuits among all runs of an experiment. This metric relates to
robustness. The second metric is the computational effort as defined by Koza in [18]
and can only be determined if a sufficient number of experiment runs produces cor-
rect circuits. In each run the optimization goal, i.e., the evolution of a functionally
correct circuit, will be reached by some generation i. Having M fitness evaluations

218

On Robust Evolution of Digital Hardware

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

fu
nc

tio
na

l q
ua

lit
y

number of fitness evaluations

GA
NSGAII
SPEA2

TSPEA2
MicroGA

Fig. 2 Average functional quality of the best individuals over the number of fitness evaluations for
the 2×2 multiplier (10 experiments runs)

per generation, the probability of reaching the optimization goal by generation i can
then be expressed as follows:

P(M, i) = (#succeeded runs by generation i)/(#runs)

From that we can determine R(z), the number of independent runs that have to
be conducted to reach the optimization goal with a certain probability z:

R(z) = �log(1− z)/ log(1−P(M, i))

The estimated overall number of fitness evaluations required to reach the goal
with probability z is then set to:

I(M, I,z) = M · (i+1) ·R(z)

For each experiment with given M and z, the minimal value for I(M, i,z) is deter-
mined as the computational effort of the experiment. In our experiments, we have
set z to 99%.

The complete set of results is presented in Table 1. This table shows the com-
putational effort and the number of successfully evolved circuits for 10 experiment
runs for each test problem. SPEA2 and µGA did not succeed in evolving a suffi-
cient number of correct circuits within the predefined number of fitness evaluations.
Therefore, we did not compute the computational effort for these optimizers. The
ranking of the algorithms with respect to the computational effort is shown in Table

219

Tobias Knieper, Bertrand Defo, Paul Kaufmann, and Marco Platzner

2, where bold values indicate that the optimizers were able to evolve a functionally
correct circuit in each single experiment run.

Table 1 Computational effort and number of correctly evolved circuits for standard GA and the
MOEAs. The computational effort is given in multiples of 106. SPEA2 and µGA could not evolve
a sufficient number of correct circuits to determine the computational effort.

6-parity 7-parity 2+2 add 3+3 add 2×2 mult 3×3 mult
GA 0.09 / 10 0.25 / 10 0.09 / 10 6.63 / 9 0.79 / 8 – / 5

TSPEA2 0.15 / 10 2.02 / 10 1.42 / 10 1.55 / 8 0.59 / 10 1.89 / 10
NSGAII 1.14 / 10 3.65 / 10 1.10 / 10 3.61 / 10 1.04 / 10 3.29 / 9
SPEA2 – / 2 – / 0 – / 1 – / 0 – / 0 – / 0

µGA – / 1 – / 0 – / 6 – / 2 – / 7 – / 0

From the results, we observe that the simpler functions, i.e., parity and 2 + 2
adder, are easily evolved by the GA, and also by TSPEA2 and NSGAII. However,
the multi-objective optimizers TSPEA2 and NSGAII require considerably more ef-
fort to evolve correct circuits. For the 3+3 adder and the multipliers, the GA could
not compete with TSPEA2 and NSGAII either in computational effort, the number
of successfully evolved circuits, or both. The results indicate that with rising bench-
mark complexity, evolving a diverse population with regard to objectives such as
circuit speed and area yields an improved robustness.

Table 2 Computational effort ranking. Bold values indicate experiments where every run produced
a functionally correct circuit.

6-parity 7-parity 2+2 add 3+3 add 2×2 mult 3×3 mult
GA 1 1 1 3 2 3

TSPEA2 2 2 3 1 1 1
NSGAII 3 3 2 2 3 2
SPEA2 4 4 5 5 5 4
µGA 5 4 4 4 4 4

5 Conclusion

In this paper, we have presented an experimental comparison of several multi-
objective evolutionary optimizers and a standard genetic algorithm for the evolution
of digital circuits. The goal was to investigate whether optimizing for circuit speed
and area, besides functional quality, can improve the speed of convergence and ro-
bustness. We consider robustness a parameter of prime importance, especially for

220

On Robust Evolution of Digital Hardware

self-optimizing autonomous systems that continuously run the evolutionary opti-
mization process.

Our experimental results show that, for more complex benchmark problems, the
classic genetic algorithm is indeed outperformed by two multi-objective optimiz-
ers, TSPEA2 and NSGAII. Two further optimizers, SPEA2 and µGA did not per-
form well for this task. In future, we plan to look at other secondary objectives to
improve convergence and robustness. For example, there might be circuit proper-
ties besides area and speed that should be enforced. As scalability is one of the
main challenges in evolvable hardware, the identification of suitable objectives for
a scalability-driven evolution is of utmost importance.

Acknowledgment

This work was supported by the German Research Foundation under project number
PL 471/1-2 within the priority program Organic Computing.

References

1. Sekanina, L.: Evolvable Components. Natural Computing Series. Springer (2004)
2. de Garis, H.: Evolvable Hardware – Genetic Programming of a Darwin Machine. In: Proceed-

ings International Conference on Artificial Neural Networks and Genetic Algorithms (ICAN-
NGA), Springer (1993)

3. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving Hardware with
Genetic Learning: A First Step Towards Building a Darwin Machine. In: Proceedings 2nd
International Conference on Simulation of Adaptive Behavior (SAB), MIT Press (1993) 417–
424

4. Coello Coello, C.A., Aguirre, A.H., Buckles, B.P.: Evolutionary Multiobjective Design of
Combinational Logic Circuits. In: Proceedings of the 2nd NASA/DoD Workshop on Evolv-
able Hardware (EH), Los Alamitos, California, IEEE Computer Society (2000) 161–170

5. Kalganova, T., Miller, J.: Evolving More Efficient Digital Circuits by Allowing Circuit Layout
Evolution and Multi-Objective Fitness. In: Proceedings of the 1st NASA/DoD Workshop on
Evolvable Hardware (EH), Pasadena, California, IEEE Computer Society (1999) 54–63

6. Kaufmann, P., Platzner, M.: Toward Self-adaptive Embedded Systems: Multi-objective Hard-
ware Evolution. In: Proceedings of the 20th International Conference on Architecture of
Computing Systems (ARCS). Volume 4415 of LNCS., Springer (2007) 199–208

7. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of the European
Conference on Genetic Programming (ECGP), Springer-Verlag (2000) 121–132

8. Coello Coello, C.A., Aguirre, A.H.: Design of Combinational Logic Circuits through an Evo-
lutionary Multiobjective Optimization Approach. In: Artificial Intelligence for Engineering
Design, Analysis and Manufacturing. Volume 16., Cambridge University Press (2002) 39–53

9. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

10. Trefzer, M., Langeheine, J., Meier, K., Schemmel, J.: Operational Amplifiers: An Example for
Multi-objective Optimization on an Analog Evolvable Hardware Platform. In: International
Conference on Evolvable Systems (ICES), Springer (2005) 86–97

221

Tobias Knieper, Bertrand Defo, Paul Kaufmann, and Marco Platzner

11. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Ge-
netic Algorithm for Multi-objective Optimisation: NSGA-II. In: Proceedings of the 6th In-
ternational Conference on Parallel Problem Solving from Nature (PPSN), Springer (2000)
849–858

12. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley (1989)

13. Coello Coello, C.A., Pulido, G.T.: A Micro-Genetic Algorithm for Multiobjective Optimiza-
tion. In: First International Conference on Evolutionary Multi-Criterion Optimization (EMO).
Volume 1993 of LNCS., Springer (2001) 126–140

14. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. In: Evolutionary Computation. Volume 8., MIT Press (2000)
149–172

15. Miller, J.F.: An Empirical Study of the Efficiency of Learning Boolean Functions Using a
Cartesian Genetic Programming Approach. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). Volume 2., Morgan Kaufmann (1999) 1135–1142

16. Miller, J.F., Thomson, P., Fogarty, T.: Designing Electronic Circuits Using Evolutionary Al-
gorithms. Arithmetic Circuits: A Case Study. In: Genetic Algorithms and Evolution Strategy
in Engineering and Computer Science. John Wiley and Sons (1998) 105–131

17. Kaufmann, P., Platzner, M.: MOVES: A Modular Framework for Hardware Evolution. In:
Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS), IEEE (5-8 Aug.
2007) 447–454

18. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

222

A Model of Self-Organizing Collaboration

Rumen Andreev

Institute of Computer and Communication Systems, Bulgarian Academy of
Sciences, Acad. G. Bonchev str. Bl. 2, 1113 Sofia, Bulgaria, e-mail:
rumen@iccs.isdip.bas.bg

Abstract Collaboration joins together persons (active objects) in some activity.
The paper concentrates on the activity, since it is the collaboration basis. The basic
theory used in computer science for activity analysis is the activity theory that con-
siders activity as a substantial part of the human interaction with the objective real-
ity (environment). In conformance with this theory, the action presents activity
substance and operation – activity (action) realization. It is analyzed cooperation
as collaboration realized in operation context.

independent, autonomous thing (self-organizing activity). This paper indicates the
main characteristics of self-organizing activity that are basis for content-, context-
independent modeling of autonomous activity. The presented model uses formal
constructions of the mathematical logic as autonomous frameworks. The self-
organizing activity is foundation for modeling of self-organizing collaboration that
results in a model describing a collaborative self-organizing system. The latter is
framework for a real process and bases on a group of active objects associated by a
shared need.

Keywords: Self-organizing activity, cooperative self-organizing system, model-

1. Introduction

Collaboration indicates a form of participation of persons or active objects in some
activity. In accordance with this form, the persons (active objects) are joined to-
gether in an activity, i.e. the activity is in state of being joint activity that ensures
partnership. The collaboration has two ingredients, since it is a mixture of a group
of persons (active objects) and an activity. Our consideration concentrates on the
most important ingredient, which is the basis of collaboration - activity. In the
computer science, the activity analysis is realized in the light of activity theory.

Please use the following format when citing this chapter:

Andreev, R., 2008, in IFIP International Federation for Information Processing, Volume 268; Biologically-Inspired Collaborative
Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston: Springer), pp. 223–232.

The activity theory considers a kind of activity that does not reveal it as an

ing, reasoning, real process.

 Rumen Andreev

In view of the activity theory, the activity is substantial part of the human inter-
action with the objective reality (environment) i.e. the activity is determined
through a system that balances [1]. The most fundamental principle of this theory
states that the human mind that is one of the main features of human beings is a
special component of human interaction with the environment. According to the
second principle of this theory, the activity is object-oriented. The object could be
not only a material thing of the human environment, but it is considered as a de-
sired object (goal), motive or objective, as well. Hence, the activity is a substantial
part of a system, which components human beings and the objects of environment
interact. The system-relevant analysis of activity is due to its objective character
and reveals that the activity takes part in keeping an (eco)system in state of bal-
ance. The system is a framework, in which the activity exists.

Another basic principle of the activity theory is the “hierarchical structure of
activity” that concerns the activity ontology. The activity exists on three levels
with regard to its nature - its existence results of a cause (object). At the highest
level the activity is considered as result of motive - object that causes human be-
ings to act. On the second level the activity exists as action - goal-directed activity.
On the lowest level the actions are realized through operations that are determined
by the actual conditions of activity. The operations convert actions into facts. This
is a psychologically relevant consideration of activity.

According to a psychologically irrelevant presentation of activity existence, the
activity description on the highest level is result of system-relevant analysis that
presents its objective character: The activity is a phenomenon of the physical
world which existence is explained by the principle of causality. The human that is
one of the system components does not cause the activity. It serves for helping
bring about the activity, i.e. it is activity factor – agent. As an agent the human be-
ing can be both reactive and proactive. The activity theory adopts the idea that
human beings are proactive agents, since the reaction (activity of a reactive agent)
is automatic, i.e. unconscious. A proactive agent is able to realize and adopt goals
and to take the initiative. It is obviously that on this level the activity analysis and
representation can be psychologically irrelevant (objective) while on the other lev-
els they are psychologically relevant [2]. The psychologically relevant analysis re-
veals the human relevant substance of activity.

The psychologically relevant action is virtual activity, which substance is pre-
sented by the line of action. The latter depends on the goal and relates to the way
of action happening (course of action). The course fixes the form of action exis-
tence (operation form). In view of the physical existence of an action, the activity
is considered as operation. When a man operates, we say that he is in action, i.e.
he implements its course that serves as purpose of human operation. The purpose
causes successful operation (functioning) of human being or executive system. It
is considered as objective cause of operation and is well known as objective. The
operation needs of a plan (organization) of action implementation. Its develop-
ment bases on the course of action and resources helping bring about an action.
The course of action and resources are two operation factors that determine its

224

A Model of Self-Organizing Collaboration

context. The former serves as a plan of operation organization. There are two
types of resources that guarantee operation: resources that carry out operation (op-
eration performer, agent) and resources that support operation performer in doing
the action. The purpose (objective) and resources are two interacting factors that
are in the base of operation and present an integrated context.

Usually the collaboration is known as cooperation, since it is considered with
respect to operation. There are three interacting elements that support the coopera-
tion reality: set of agents, shared resources and shared objective. They determine
the framework, which supports an engineer in construction of cooperative forms
(Fig. 1). The agents take parts in various cooperative actions, in which they have
different roles [3]. They are the substance of cooperation. An agent can either be a
human or a computer-based component, which is an active process supported by a
computer system [4].

This framework supports the development of various methodologies for coop-
eration design and realization. The cooperation transforms the set of agents into a
group of agents. There are two factors that help the composition of a group: shared
resources and a shared view of communicating agents on a subject or shared ob-
jective of working agents [5]. The shared resources are contained in environment
that is influenced by organizational approaches and coordination techniques. This
organized environment is the background of cooperation. The shared view is the
cooperation foreground, i.e. the domain, in which the agents cooperate [6].

Set of Agents
(Components)

Shared Objective
(Shared View)

Shared Resources

Collective Community

Cooperative

Shared Context

 Figure 1. Engineering framework for cooperation

The three cooperation factors act on each other. The shared resources helping
transformation of a set of agents into community are community factor. The com-
munity is a cooperative form. The cooperative use of shared resources is a typical
community-wide behavior of the members of community, which is considered as a
whole. The shared objective is collective factor. It helps the union of agents in co-
operative form known as collective. This is a group of agents that looks like a

225

 Rumen Andreev

whole. The shared objective guarantees collective behavior of agents in an organ-
ized system. The shared objective and shared resources compose shared context
that determines the cooperative operation of agents. They ensure two types of
groupware. The group construction is analyzed not only with respect to coopera-
tion, but with regards to communication, as well. The groups regarded in commu-
nication assist the cooperation, since the information is a necessary factor for op-
eration management [7]. The shared objective is a factor for organization of
resource environment and the shared resources are factor (means) for achievement
of a shared objective. The interaction between these cooperation factors ensures an
integrated shared context.

The cooperation background can be computer-supported environment (comput-
erized environment), in which the resources are usually distributed. Environment
consisted of resources of the same kind is homogeneous environment that guaran-
tees uniform access to the resources. If the latter are of different kind, the envi-
ronment is heterogeneous. The unification of the access to the resources of this
environment requires its homogenization that can be achieved by using of grid
technology [8]. The cooperative use of resources is provided by services for coor-
dination, shared sessions and support of synchronous and asynchronous access [9,
10]. The shared objective that is the logical part of shared context organizes the
agents that are workflow participants in a collective system, i.e. coordinates their
work [11]. A common project can be regarded as shared objective [12].

The shared view can be used for arrangement of computerized environment,
which becomes setting for cooperative work of agents of a group that is regarded
as multi-agent system [13]. The shared view is a conceptual model that is factor
of interoperability supporting cooperation [14, 15]. In Internet-based environment
the common view ensures the building of Semantic Web that ensures cooperation
through interoperability [16]. The framework for construction of cooperative
forms integrates the main cooperation factors: agents, computerized environment
(grid) and shared objective. In this way, it gives an approach to solution of the
problem of agents/grid integration [17].

Self-organizing collaboration requires a self-organizing basis, i.e. a self-
organizing activity. The self-organizing activity is the substance of autonomous
activity, which main characteristic is independence. A thing that is complete in it-
self (a whole) is an autonomous thing. The self-organizing activity has the form of
unity, since it results of arrangement of its parts to form a complete whole. The ac-
tivity theory explains a kind of activity that is not self-organizing, since it has the
following characteristics:

The activity is substantial part of an integrated system: The integration is
due to interaction that ensures system balance. The activity takes part in
this interaction, but does not organize it, i.e. it has not unity form;
As a necessary consequence of an external cause presented by a motive,
the activity evidently subjects to the law of causality and its existence de-
pends on an external object – the activity is not independent;

226

A Model of Self-Organizing Collaboration

The proactive agent and object that causes the activity are determining
elements (determinants) of activity and present its context: The context-
dependent determination of activity is a systematic view on it that does
not describes the activity as autonomous thing - independent object with
quality of wholeness. It is necessary to distinguish the completeness of an
activity from its wholeness that is characteristic of an integrated system.

The next section defines self-organizing activity. On this basis it presents a
model of collaborative self-organizing system. The third section describes an en-
gineer view on the content-, context-independent model of self-organizing col-
laboration.

2. Model of collaborative self-organizing system

The basis of self-organizing collaboration is self-organizing (autonomous) activ-
ity. This kind of activity has the following basic characteristics:

The law of causality is a principle of self-organizing activity: It is in the
nature of self-organizing activity
An autonomous activity results of an intrinsic physical need of an object
(human being) and belongs to it, as its capability: As this object holds the
activity, it is active object that causes an activity and helps for its happen-
ing;
In view of the activity independence, the activity of an active object must
ensures the satisfaction of its intrinsic need with the help of another ob-
ject that must meet this need: This necessary object guarantees the activ-
ity completion, i.e. it is a part of activity;
This kind of activity involves in itself all objects that are necessary for its
existence, integrates them as parts of a complete whole and arranges
them in harmonious relation: The result is the composition of a unity.

These characteristics are necessary for nature-based modeling of self-organizing
activity that ensures content-, context- independent representation. The result of
this way of modeling is a formal model.

The presented kind of activity materializes the law of causality. Its substance is
an integrated system consisting of two interacting components - active object and
necessary object. This system guarantees activity wholeness. In self-organizing
activity the necessary object does not only correspond to the active object, but cor-
responds with it, as well. The two objects are in harmonious relation, since the
necessary object meets an intrinsic need of the active object. Harmony and equal-
ity are simultaneously the most important characteristics of autonomous activity.

According to the nature of self-organizing activity, this kind of activity can be
presented by implication, since it present a formal material form that involves two
objects that are simultaneously in harmonious relation and in balance. This con-
sideration of implication is in conformance with its definition given by the
mathematical logic through a truth table [18]. Using the definition of equivalency,

227

 Rumen Andreev

the implication (autonomous activity) has the following presentation, in which
a_object is active object and n_object is necessary object

a_object n_object (a_object n_object) (a_object n_object) .

This statement reveals that the implication is union of equivalency and harmoni-
ous relation (a_object n_object), where n_object satisfies a need of active ob-
ject (a_object). The equivalency a_object n_object presents an integrated sys-
tem that bases on the balance due to the interaction between an active object and
necessary object. As the integrated system (equivalency) and harmonious relation
are the basis of a self-organizing activity, which substance coincides with the
definition of unity [19], it is obviously that the implication indicates an autono-
mous activity, i.e. it is in conformance with unity. Therefore, the formal model of
self-organizing activity is active object necessary object.

Since the self-organizing activity supports self-organizing collaboration, the
model of autonomous activity is a model of the framework for self-organizing col-
laboration. It represents the outer form of self-organizing collaboration, in which
active objects act together. It is accepted that two active objects are partners in a
self-organizing activity. This self-organizing collaboration is presented by the fol-
lowing expression

 active object1 active object2 shared necessary object.

This model of self-organizing collaboration states that the necessary object satis-
fies a need, which the active object1 shares with the active object2, i.e. it is a
shared necessary object (sh_n_object). The self-organizing collaboration is due to
a shared need.

As result of nature-based (formal) modeling, the model of self-organizing
collaboration presents its essential characteristics:

1. Self-organizing collaboration exists in a collaborative self-organizing system.
The active objects and necessary object are components of a collective self-
organizing system, since they are in symmetrical relation guaranteed by the
autonomous activity, in which they take part. The symmetry presented by its
qualities of harmony and balance is a characteristic of self-organizing activity.

2. Collaborative self-organizing system is framework for a real process. The
self-organizing collaboration has several representations. The upper model is its
basic representation that could be presented in the following way

 active object1 (active object2 shared necessary object).

This expression states that a complex autonomous activity can exists in the col-
laborative self-organizing system. The complex autonomous activity is a real
process, since it presents a continuous succession of activities. The continuity is a
necessary consequence of the wholeness of a object. As the autonomous activity

228

A Model of Self-Organizing Collaboration

ensures the framework for self-organizing collaboration, the collaborative self-
organizing system is a complete whole, as well.

3. Self-organizing collaboration is induced by naturally associated active ob-
jects that are in state of being united with an object, which helps them to satisfy
their shared need and to integrate them. The following statement presents another
alternative expression of self-organizing collaboration

a_object1 a_object2 sh_n_object (a_object1 a_object1) sh_n_object

This expression is inspired by the equivalence between (p q) and (p q) set-
tled by the mathematical logic. It states that the active objects taking part in col-
laboration are naturally associated by a shared need, i.e. they are in a group. They
are of different types. The shared necessary object integrates them in a whole.
They wholeness of the group of active objects is preserved in the framework of
self-organizing collaboration.

3 An engineer view on the model of self-organizing collaboration

There is a dualistic view on the representation of self-organizing collaboration that
is a special kind of collaboration and is supported and shaped by collaborative
self-organizing system. The latter is a material form, in which the collaboration
exists. It determines unconditionally an outer form that ensures the happening of
self-organizing collaboration. Hence, the collaborative self-organizing system is a
priori form of self-organizing collaboration and it is a foundation for achievement
of a real self-organizing collaboration. In view of an engineer, the presented model
is very general description of autonomous collaboration. It is due to the fact that
this model does not concentrate on the substance of self-organizing collaboration.
The system-relevant analysis of self-organizing activity gives only the outer form
(shape), in which it exists and ensures its formal (general) description.

In view of an engineer, the formal description of self-organizing collaboration
is useless. An engineer shows interest in the substance of an object that he designs
and realizes. For this purpose, it requires a detailed object description that presents
the inner form of the object. An inner form that gives the nature of object exis-
tence is necessary for object specification. The detailed description does not only
ensure a detailed representation of engineer view on object existence, but guaran-
tees object realization, as well.

The satisfaction of engineer requirements can be achieved by a deductive ap-
proach to consideration of the model of self-organizing collaboration. It requires
more definite presentation of collaboration substance on the levels of action and
operation. It has to be in conformance with the limitations of the collaborative
self-organizing system. On the level of action it is presented the particular sub-
stance of self-organizing collaboration. On the lower level of operation the col-

229

 Rumen Andreev

laboration presentation is more concrete, since the operation description gives
specific knowledge that is necessary for the performance of action.

On the action level, the collaborative self-organizing system has to undergo the
following changes: the shared necessary object is treated as shared goal; the active
objects are regarded as human beings; the activities of active objects are consid-
ered as separate processes, i.e. the whole process is divided in two. To keep the
harmony of self-organizing collaboration, the first of the two processes has to pro-
duce a satisfactory result, i.e. a result suitable for use of the second process. The
second process has to produce a desired result. It is evident that the processes have
to be efficient. This is the requirement to the psychologically relevant presentation
of self-organizing collaboration on this level. With respect to the operation level,
the two main processes are presented as series of actions that are realized through
operations. To satisfy the requirement for realization of efficient processes, it is
necessary to control the operations. In view of the control, there are the following
paradigms of operation performance: arrangement-conducted operation, opera-
tion in regulation and adaptation-based operation.

To be in line with computer science, the self-organizing collaboration could be
represented on the action level in the following way

Provider User shared goal.

In this model the user and provider are the active objects that are associated by
a shared need presented by a shared goal. This model is suitable for representation
of an education system, in which the teacher is considered as provider and the stu-
dent as user. [20]. This statement is useful for representation of a software devel-
opment system, as well. Here, the software engineer is a provider. The provider
can be a producer or servant.

In the following presentation of the upper model of self-organizing collabora-
tion, the provider carries out a producer role

Provider (User shared goal).

In this form the model represents the following real meaning (substance) of the
analyzed self-organizing collaboration:

User regulates the producer process and has to achieve a desired result:
The producer has to supply the user process with a satisfactory product;
The provider activity (production process) supports the collaboration and
reveals the capabilities of the collaborative self-organizing system: This
model of the system is known as process-oriented, since it supports two
processes;
The symmetry of the collaborative self-organizing system is ensured
through a harmonious relation between the provider and user: The former
has to satisfy the user requirements.

230

A Model of Self-Organizing Collaboration

Another form of action-based model of collaborative self-organizing system
adopts the idea that the provider is a servant

 User (Provider shared goal).

This form of the psychologically relevant model of self-organizing collabora-
tion brings out in the foreground, the following essential characteristics of the sys-
tem:

The provider is a servant: it is treated as a means in the collaborative
process;
The model presents a service-oriented approach to the realization of col-
laborative self-organizing system;
The symmetry is ensured by interaction between the user and provider:
In this case the symmetry is presented by its quality of balance;

If the provider is simultaneously a servant and producer, its process has to produce
a desired result (not satisfactory result).

4 Conclusions

The analysis of self-organizing collaboration concentrates not on its substance or
realization, but on its outer form that coincides with the framework of autonomous
collaboration. This approach results in a content-, context-independent representa-
tion of collaboration. Since the formal constructions of the mathematical logic are
suitable for formal modeling of self- organizing activity and collaboration, the lat-
ter are expressed by the five well-known operations (constructions) of the mathe-
matical logic: equivalency, implication, disjunction, conjunction and negation.
They are taken up not as structures that serve for presentation of subject substance,
but as frameworks (outer form of a whole thing) presenting the material form of
self-organizing collaboration.

The different ways of presentation of implication that represent self-organizing
activity support our reasoning on self-organizing collaboration. It results in the
following findings: self-organizing collaboration exists in the border of an
autonomous system; a collaborative self-organizing system is a framework for a
real process; naturally associated active objects induce self-organizing collabora-
tion. The usage of the operations of the mathematical logic for presentation of
various autonomous frameworks needs of a new interpretation of the basic logic
symbols A and A and the basic constructions, in which they take part.

231

 Rumen Andreev

References

1. Kaptelinin, V.: Activity theory: Implications for human computer interactions. In: Brower-Janse, M.,
Harrington, Th. (eds) Human-Machine Communications for Educational Systems Design, NATO
ASI Series F Vol. 129, pp. 5-15. Springer-Verlag (1994)

2. Vicente, K.: Wanted: psychologically relevant, device- and event-independent work analysis tech-
niques. Interact. With Comput. Vol. 11, pp. 237-254 (1999)

3. Tamai, T.: Objects and roles: modeling based on the dualistic view. Inf. and Softw. Technol. Vol.
41, pp. 1005-1010 (1999)

4. Wegner, H., Hupe, P., Matthes, Fl.: A process-oriented and content-based perspective on software
components. Inf. Syst. Vol. 25 (2), pp 135-156 (2000)

5. Larsson, T.I., Vainio-Larsson, A.A.: Software producers as software users. In: Gilmore, D.J.,
Winder, R.L., Detienne, Fr. (eds) User-Centered Requirements for Software Engineering Environ-
ments, NATO ASI Series F Vol. 123, pp. 285-306. Springer-Verlag (1994)

6. Lu, St. C-Y, Cai, J.: STARS: A socio-technical framework for integrating design knowledge over
the Internet. IEEE Internet Comput. Vol. 4 (5), pp. 54-62 (2000)

7. Guerrero, L.A., Fuller, D.A.: A pattern system for the development of collaborative applications.
Inf. and Softw. Technol. Vol. 43, pp. 457-467 (2001)

8. Roure, D., Baker, M.A., Jennings, N.R., Shadbolt, N.R.: The evolution of the grid. In: Fox, G., Hey,
A.J.G. (eds) Grid Computing-Making the Global Infrastructure a Reality pp. 65-100, John Wiley
and Sons (2003)

9. Lopez, P.G., Skarmeta, A.F.G.: ANTS framework for cooperative work environments. IEEE Com-
put. Vol. 36 (3), pp. 56- 62 (2003)

10. Singh, M.P.: Conceptual modeling for multiagent systems: Applying interaction-oriented pro-
gramming. In: Chen, P.P., Akoka, J. (eds) Conceptual Modeling, LNCS Vol. 1565, pp.195-210,
Springer-Verlag (1999)

11. Gellersen, H.-W.: Support of user interface design aspects in a framework for distributed coopera-
tive applications. In: Taylor, R.N., Coutaz, J. (eds) Software Engineering and Human-Computer In-
teraction, LNCS Vol. 896, pp. 196-210, Springer-Verlag (1995)

12. Perez, M., Rojas, T.: Evaluation of workflow-type software products: a case study. Inf. and Softw.
Technol. Vol. 42, pp. 489-503 (2000)

13. Liedekerke, M.H., Avouris, N.M.: Debugging multi-agent systems. Inf. and Softw. Technol. Vol.
37 (2), pp. 103-112 (1995)

14. Szykman, S., Fenves, St.J., Keirouz, W., Shooter, St.B.: A foundation for interoperability in next-
generation product development systems. Comput.-Aided Des. Vol. 33, pp. 545-559 (2001)

15. Chen, P.P., Thalheim, B., Wong, L.Y.: Future directions of conceptual modeling. In: Chen, P.P.,
Akoka, J. (eds) Coceptual Modeling, LNCS Vol. 1565, pp. 287-301, Springer-Verlag (1999)

16. Aroyo, L., Dolog, P., Houben, G.-J., Kravcik, M., Naeve, A., Nilsson, M., Wild, Fr.: Interoperabil-
ity in personalized adaptive learning. Educ. Technol. and Soc. Vol. 9 (2), pp. 4-18 (2006)

17. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents need each
other. In: Proceedings of AAMAS’04, ACM (2004)

18. Stall, R.R.: Sets, Logic and Axiomatic Theories. Freemand & Company, London (1965)
19 Hornby, A.S., Cowie, A.P., Gimson, A.C.: Oxford Advanced Learner’s Dictionary of Current Eng-

lish (Third Edition). Oxford University Press, Oxford (1987)
20. Andreev, R.D., Troyanova, N.V.: E-learning design: An integrated agent-grid service architecture.

In: Proceedings of IEEE John Vincent Atanasoff 2006 International Symposium on Modern Com-
puting, pp. 208-213, IEEE Computer Society (2006)

232

Willi Richert, Oliver Niehörster, Florian Klompmaker

Abstract Robots have a powerful means to drastically cut down the exploration
space with imitation. However, as existing imitation approaches usually require
repetitive demonstrations of the skill to learn in order to be useful, those are typ-
ically not applicable in groups of robots. In these settings usually each robot has its
own task to accomplish and should not be disturbed by teaching others. As a result
an imitating robot most of the time has only one observation of a specific skill from
which it can learn.

We present an approach that allows an individually learning robot to make use
of such cases of sporadic imitation which is the normal case in groups of robots.
Thereby, a robot can use imitation in order to guide its exploration efforts towards
more rewarding areas in the exploration space. This is inspired by imitation often
found in nature where animals or humans try to map observations into their own
capability space. We show the feasibility by realistic simulation of Pioneer robots.

1 Introduction

With the benefits of drastically cutting down the exploration space imitation is one
of the most powerful learning techniques one can find in nature [5, 6, 8]. This
has been acknowledged also by robotics researchers when they embraced different
methods to apply imitation to learn tennis swings or drumming movements [10] or
e.g. to forage [9]. However, except for the work on imitating skill sequences in all
these experiments the demonstrator is always determined (often the human) and the
time frame where the imitation has to pay attention is provided beforehand. The
task to be learned by imitation is then repeated several times and the robot after-
wards has to derive a generalized representation of the imitated task and be able to
replay it. Up to now no research has been carried out regarding sporadic imitation,
which is apparently very important when robots in groups should benefit from each

Intelligent Mobile Systems, University of Paderborn / C-LAB, Germany, richert@c-lab.de

Please use the following format when citing this chapter:
Richert, W., Niehörster, O. and Klompmaker, F., 2008, in IFIP International Federation for Information Processing, Volume 268;
Biologically-Inspired Collaborative Computing; Mike Hinchey, Anastasia Pagnoni, Franz J. Rammig, Hartmut Schmeck; (Boston:
Springer), pp. 233–244.

Guiding Exploration by Combining Individual
and Imitation in Societies of

Autonomous Robots
Learning

Willi Richert, Oliver Niehörster, Florian Klompmaker

others learning efforts. Typically, the imitation process should not interrupt the ob-
served robot, so that the imitating robot often has only one example of the same
type of interesting behavior to learn from. As this usually does not provide enough
information for learning a generalized version of the observed action, it can help the
observer to narrow the learning exploration space. This is the aim of our paper.

With the presented approach comprising the strategy and low-level skill layers
an observing robot can benefit from the imitation process

1. by observing new state sequences for which it could spent more exploration ef-
forts,

2. by observing new behaviors for already known state transitions, and
3. by incorporating other robot’s transition data condensed into its own strategy.

In Fig. 1 an example is shown in which the robot (imitator) tries to understand the
observed behavior episode of another robot (demonstrator). The observed episode
consists of the recorded perception and the demonstrator’s visible “well-being”, a
kind of emotional state that comprises its overall state in form of a set of drives.
Therefore the imitator first translates the observations into its own perception to see
what it would perceive if itself would have been in the demonstrator’s situation. It
then scans the subjective perception and allows its low-level skill to give so-called
votes about how well each skill could have achieved the perception changes. Using
an algorithm inspired by Viterbi those votes are then used together with the likeli-
ness of the demonstrator’s state space to find the most likely path corresponding to
the observations. In this paper we will focus at the skill and strategy layer, as they
are most important to the understanding of the observed behavior.

234

Fig. 1 Procedure of interpreting another robot’s performance in order to imitate it.

2 Related Work

Most approaches regarding imitation of robotic behavior are based on Hidden
Markov Models (HMM) and use the Viterbi algorithm to synthesize behavior
thereof. Billard et al. [4] use e.g. the Viterbi algorithm to let the upper part of a robot
replay a limited set of arm movements that move colored objects. In their work the
demonstrator-imitator roles are known and fixed. Also the start and end points of
the behavior to imitate is known to the robot. They split the imitation task into the
observation and imitation processes, having the goal to minimize the discrepancy
between the demonstrated and imitated data sets. In their approach the robot is only
able to learn low-level behavior and this can only be done from scratch. In contrast
to Billard we do not aim to imitate for the sake of copying another robot’s low-level
behavior, but to gather new inspiration for the imitating robot to drive its learning
efforts to. This will have to include all levels of abstraction, not only low-level be-
havior.

Closest to our approach come Inamura et al. [11, 12] with their Mimesis Loop ap-
proach. Thereby they are able to symbolize observed low-level behavior traces. This
is used as top-down teaching from the user’s side in combination with the bottom-up
learning from the robot’s side. As this is useful to decrease the programming effort
it is an exclusive solution, not allowing to be used with other learning techniques
like e.g. Reinforcement Learning. Also their approach is not able to use already
existing abstract states of the imitator in the recognition process. Once a robot has
extracted enough information to construct a HMM based on the recognized low-
level behaviors it is fixed to that HMM – no exploratory actions on the abstract
states are possible any more. Furthermore, the segmentation process that splits the
continuous movement trajectories into basic movements uses a fixed scheme. With
that it is not possible to allow for ambiguities at the recognition phase.

In our approach we assume that the robot has already decent self-learning ca-
pabilities. Imitation is used to guide the robot to the “salient” points in exploration
space. With more experience the robot will have collected better skills and a more
realistic strategy representation. This in turn will enable it to extract more knowl-
edge from its observation efforts.

The desired outcome of the observation and recognition phase in an imitation pro-
cess is a state-action-trace that results in a performance similar to the observations.
For this the robot has to find abstract states in its own strategy that should play a
role when replaying the imitated behavior. Furthermore, it should only regard states
that can be connected via actions the imitating robot is capable of. This leads to a
tight coupling of the strategy and skill component in the system architecture, ac-
complishing the recognition of other robots in terms of its own strategy and skill
capabilities. Therefore, the strategy and skill layers will be described before. The

235Guiding Exploration by Combining Individual Learning and Imitation in MAS

3 Imitation Supporting Architecture

Willi Richert, Oliver Niehörster, Florian Klompmaker

strategy is modelled with a Semi-Markov Decision Process (SMDP) that has a dy-
namically adjustable state space (Sec. 3.1) and uses self-developed skills as actions,
which are triggered in terms of goal functions on the perception (Sec. 3.2).

3.1 Learning strategies

The strategy layer is inspired by the AMPS approach [13]. It uses a domain-
dependent abstraction method to generalize actual state realizations into abstract
regions (in our work we use nearest neighbor [7]). The Reinforcement Learning al-
gorithm is then applied onto these regions which simplifies and speeds up the whole
process significantly. As the regions can be merged and split at run-time we use
Value Iteration [15] to determine the best policy. AMPS, however, applies the split-
ting and merging also to the action space, which works fine in artificial domains
but will not cope with the domain dependency one is typically faced with in real
environments. Here, we use as the strategy’s actions goal functions which have to
be realized by a separate skill learning layer.

In contrast to the pure AMPS method, which by the nature of Reinforcement
Learning always learns one strategy to reach one goal, self-adapting systems often
have to fulfill several goals – sometimes contradictory ones. Take for example a
system that has to fulfill a task while paying attention to its diminishing resources.
If it accomplishes the task the resources might get exhausted. On the other hand,
if it always stays near the fuel station, the task won’t be accomplished. As already
described we use abstract drives which the designer has to specify. These drives
may also contain competing goals. The big advantage of our approach is that the
robot can learn a separate strategy for each drive. Depending on how big the actual
motivation is for every drive it has now a means to choose the right strategy for the
actual perception and drive state.

3.2 Learning low-level skills

The input of the skill-learning algorithm is given by the strategy layer (Sec. 3.1) in
terms of an error function e. Fig. 3 shows a camera image that has been taken from
the robot used in the experiments (cf. Sec. 5). The ball that is recognized by a vision
algorithm has the properties width and the 2D coordinates of the image. Let d be the
euclidean distance of the ball to the image center and ∆r the difference between the
maximum size of the vision image and the size of the ball in it. The error function
that formulates the goal to maximize the ball in the middle of the camera image e.g.
would be:

e(d,∆r) =
√

d2 +∆r2 (1)

236

The first step is then to get a set of training examples that will later be generalized.
During this initial exploration the algorithms gathers information about the relation-
ship between the actuators and the effects. The changing of the actuators is called
an action A. An effect is the perceived result of an action. The actions are generated
randomly and are applied for some time. In this phase we call the actuator values the
input I and the perceived effect the output O, as they are seen from the skill learning
algorithm’s perspective. This information are the components of a trace T with the
length t: T = (A,{(I0,O0), . . . ,(It−1,Ot−1)}). Several traces are recorded. Now the
error function e is used to extract the good traces forming the training set. To get
as many traces as possible, every trace is cut at the position i (0 ≤ i ≤ t −1) of the
lowest error e(Oi). Then every trace not leading to an improvement in terms of e is
discarded.

Previous to the generalization, the number of traces and the dimensions have to
be refined to reduce the generalization complexity. The most important attributes of
a trace are A, I0, O0 and Ot−1. If the actuator configuration I0 and the sensor vector
O0, which describe the current situation, are given, A has to be used to reach the
effect Ot−1. To reduce the number of traces, we do an agglomerative hierarchical
clustering. Only the mentioned attributes of a trace are used. The distance measure
between two traces is the euclidean distance of the attribute values. The distance
between two clusters is defined by average-linkage. The dimensions of I0 and O0
depend on the number of actuators and effect properties. Actuators that don’t influ-
ence the effect can be ignored in the generalization step. Another side-effect of the
dimension reduction is the noise reduction, because also the data dimensions with
no significant effect to the action-effect can be ignored. We use PCA [1] for this and
specify the number of principal components to be kept by the fraction of variance
to be explained. In our experiments we were able to reduce the dimensions from six
to two while maintaining 95 percent of the data’s accuracy.

The last two steps reduce the trace data to the basic properties. In the PCA step
a mapping from the data into a new artificial space is done. To generalize the data,
a mapping from the principal components. x0, . . . ,xn to the individual actor ele-
ments ai ∈ A is calculated. We use a polynomial regression for every ai. To get the
simplest polynomial of ∑d

i=0 ∏n
j=0 pi jx j

i that fits the data sufficiently the algorithm
starts with d = 0 and increments it until the prediction error drops below a prede-
fined error threshold. This process can be seen in Fig. 2. There is also a threshold
for the complexity’s degree. To avoid over-fitting a maximal possible degree can
be specified. Finally, a function fi(x0, . . . ,xn) = ai is calculated for each ai. When
applying the learned skill I0 and O0 are known as the current parameter values of
the actuators and sensors. A mapping to the PCA space has then to be done before
using the calculated fis to build the next action A. With this approach the robot can
reach maximal adaptivity and robustness with regard to sudden breaks or graceful
degradation [14].

237Guiding Exploration by Combining Individual Learning and Imitation in MAS

Willi Richert, Oliver Niehörster, Florian Klompmaker

Fig. 2 Finding the simplest reasonable hypothesis for the first actor element in PCA space. The
graphs show the fitted function for one actor dimension dependent on the two calculated PCA
dimensions. The degree of the polynomial is incremented from d = 0 up to d = 3. In Fig. 2(d) the
final function can be seen. The increase of d has been stopped because the fitting error falls below
a defined threshold.

4 Sporadic Imitation

With the described means for strategy and skill learning we can now adapt the
Viterbi algorithm which is often used to imitate using HMMs. Before we explain
the core of our imitation algorithm, we will therefor give a short overview of the
Viterbi algorithm following the notation of Bengio [3].

4.1 Viterbi

The Viterbi algorithm [16] tries to find the most likely hidden state sequence sT
1

(Viterbi path) that explains the observation sequence oT
1 . This can be done by max-

imizing the following constraints:

238

(a) d = 0 (b) d = 1

(c) d = 2 (d) d = 3

sT∗
1 = argmax

sT
1

P(sT
1 |oT

1) = argmax
sT
1

P(sT
1 , oT

1) (2)

Using Bellman’s dynamic programming algorithm [2] the Viterbi algorithm de-
termines the maximum efficiently in time O(T n) where n is the number of non-zero
transition probabilities. It recursively calculates the probability

V (s, t) = max
st−1
1

P(ot
1,s

t−1
1 ,st = s) (3)

that s is the hidden state at time t given the observations ot
1 for all s ∈ S:

V (s, t) = P(ot |st = s)max
s′

P(st = s |st−1 = s′)V (s′, t −1) (4)

V is initialised with V (s,1) = maxs1 P(o1 |s1 = s)P(s1 = s) ∀ s ∈ S. The most likely
path can now be extracted using

ϕ(s, t) = argmax
s′

P(st = s |st−1 = s′)V (s′, t −1) , (5)

which determines the best predecessor of state s at time t.

4.2 Understanding observed behavior

The imitation approaches usually found in literature calculate the Viterbi path to find
the state sequence the imitator should realize in order to exactly copy the observed
behavior. This is done using the state space (assumed to be fix) of the inferred HMM,
which is assumed to reflect the demonstrator’s state space. In contrast to those meth-
ods it is important to see that we use a method similar to the calculated Viterbi path
to explain the observations recorded from the demonstrator with the imitator’s al-
ready existing state and action space. Thereby, the imitator tries to understand the
demonstrator with the knowledge it already has in terms of its own state space (cf.
Sec. 3.1) and behavior repertoire (cf. Sec. 3.2).

If the observations provide enough information to infer the corresponding state,
P(ot |st) could be straightforwardly calculated out of the state representation chosen
for the specific domain. If e.g. a nearest neighbor approach is chosen to map state
observations to abstract states used in the SMDP, P(ot |st) could e.g. chosen to be
inversely dependent on the distance to the labeled observation instances in the kNN-
representation. However, this is seldom the case in realistic applications so that in
order to be able to use Viterbi for inference on the imitator’s self-learned knowledge,
the robot has to 1) infer the probable state transitions, and 2) guess which of its
behaviors could have realized those observed state transition.

The calculation of P(st = s |st−1 = s′) in Eq. 4 is more involved. If one would
just take the transition probability of its greedy action in st−1 the robot would not get
new insight about other and maybe better state transition behaviors in that specific

239Guiding Exploration by Combining Individual Learning and Imitation in MAS

Willi Richert, Oliver Niehörster, Florian Klompmaker

state. Instead, it should guess from the observations which of the behavior in its own
behavior repertoire would best match the recorded observations.

Let us now consider state transition 〈sta ,stb〉, where sta �= stb . Firstly, for every
recorded observation step 〈ot−1,ot〉 (t ∈ [ta, tb]) all the behaviors are asked to give a
vote Pb(ot |ot−1) representing the ability of behavior b to be able to realize that step1.
These are determined by means of the corresponding error function with which the
behaviors were learnt. These votes are then divided by the time span of the full state
transition:

Pb(stb |sta) =
∑tb

t=ta Pb(ot |ot−1,sta)

tb − ta
(6)

At every state transition, one can now determine the most likely transition action
bml = argmaxb Pb(stb |sta). It can be used to retrieve the transition probability in the
observer’s SMDP that would most probably correspond to the observation of the
demonstrator: P(stb |sta) = P(stb |sta ,bml). Thereby, we get the recursive solution

V (s, t) = max
b

Pb(ot |st = s,ot−1)max
s′

P(st = s |st−1 = s′,a = bt−1)V (s′, t −1) , (7)

in which P(st = s |st−1 = s′,a = bt−1) = T (s′,a,s) are the transition probabilities
learnt in the strategy layer. ϕ(s, t) is determined accordingly. For full reference, the
whole algorithm is depicted in Alg. 1. It has the same time complexity as the Viterbi
algorithm.

i i+1〉-
traces for later replay or spend direct reward along that trace in its strategy layer. If
P(stb |sta ,agreedy) is below a predefined threshold (θ in Alg. 1) it is assumed that
the robot has no behavior that could probably generate the observed movement
from time ta to tb, marking where it could most efficiently spend its valuable ex-
ploration time. Of course, in this case it is wise not to incorporate the understood
sub-sequences of the observed trace, but to wait until behavior for the missing link
has been learnt so that the full trace is understood.

5 Evaluation

To evaluate the approach robots were put into an environment with soccer balls that
had to be transported onto an elevated platform (Fig. 4). To achieve that they can
simply push the ball or use their grippers to pick the ball and release it on the target
area. The robots have a defined field of view (fov) of 60◦. The field size is 100m2.
They are able to perceive via their vision capabilities the distance and bearing of the
nearest soccer ball if it is within their fov. The platform onto which the ball has to be
put is given as absolute coordinates to the robot, which also knows its own position.
Overall the robot can perceive the following attributes:

1 Note the different time scales at the observation and state recordings notations.

240

With this information the observing robot can now either remember the〈s ,a,s

Algorithm 1 RECOGNIZE: Recognize familiar behavior and save unrecognizable
behavior for later exploration
Input: OT

1 : observation 〈(o1,e1), . . . ,(oT ,eT)〉 as an (observation, evaluation)-episode stream
where e1 < eT ; S and T (s′,a,s): state space and transition probabilities of the SMDP

Output: Recognized most likely state transitions and missing links
1: Transform OT

1 into subjective observations → oT
1

2: Γ ← /0 // collects understood 〈s′,a,s〉 triples
3: Ψ ← /0 // collects missing links 〈s′,s〉 that must be explored later on
4: V (s,1) ← maxs1 P(o1 |s1 = s)P(s1 = s) ∀ s ∈ S
5: tlast ← 1
6: t ← 2
7: while t < |T | do
8: for s ∈ S do
9: bt−1 ← argmaxb Pb(ot |st−1 = s,ot−1)

10: V (s, t) ← maxb Pb(ot |st−1 = s,ot−1)maxs′ T (s′,bt−1,s)V (s′, t −1)
11: ϕ(s, t) ← argmaxs′ T (s′,bt−1,s)V (s′, t −1)
12: if ϕ(s, t) �= ϕ(s, tlast) then
13: s′last ← ϕ(s, tlast)
14: bml ← argmaxb Pb(s |stlast)
15: slast ← ϕ(s, t)
16: Γ ← Γ ∪〈s′last ,bml ,slast〉
17: tlast ← t
18: break
19: end if
20: end for
21: if maxb Pb(ot |st−1,ot−1) < θ then
22: while maxb Pb(ot |ot−1) < θ and t < |T |−1 do
23: t ← t +1
24: end while
25: Ψ ←Ψ ∪〈tlast , t〉
26: V (s, t) ← maxst P(ot |st)P(st) ∀ s ∈ S
27: end if
28: t ← t +1
29: end while
30: return Γ , Ψ

• the relative coordinates and width of the ball in the camera image (Fig. 3):
(xb,yb,wb)

• distance of the ball from the ground the robot is standing on to detect gripper
activities: hb

• distance and bearing of the target zone: (dz,θz)

The skill layer has as the capabilities to rotate and to translate the robot and to
manipulate the gripper. If it is not using its grippers it is nevertheless able to move
the balls around in the field by simply pushing them. In the imitation process only
the positions of the ball and the robots can be observed. The robot’s perception,
called observation in the algorithm, is thus:

o = (xb,yb,wb,hb,dz,θz)

241Guiding Exploration by Combining Individual Learning and Imitation in MAS

Willi Richert, Oliver Niehorster, Florian Klompmaker¨

Fig. 3 The perception of the robot that we use in
our experiments. It shows one camera image with
the ball that has been recognized by our vision
algorithm.

Fig. 4 Experimental scenario: The ball has to
be put onto the elevated platform.

Changes in this data are used by the already learned skills in the recognition process
to check whether the they could have accomplished those changes.

The experiment goes as follows: Two robots, called demonstrator and imitator in
the following, are equipped with appropriate strategies and skills in order to move
the ball around: The demonstrator is setup with manually handcrafted code, com-
prising three skills: approaching ball, lifting the ball, and approaching the goal. The
imitator is missing the behavior to lift the ball. It has instead individually learned
the skill to approach the ball (cf. Sec. 3.2) and is able to approach the goal, and the
corresponding strategy using those skills (cf. Sec. 3.1). In the experiment, the imi-
tator is allowed to observe the demonstrator. The new exploration hints as received
from the presented algorithm it has obtained via the observation process are then
analyzed. The actual exploration in thereby collected narrowed exploration space is
not focused in this paper.

As can be seen in Fig. 5 the imitator has successfully recognized episodes in the
demonstrator’s movements that coincide with the imitator’s own behavior knowl-
edge (dark areas). The B denotes the time span in which the demonstrator recog-
nized a behavior resembling its own approach ball behavior, and G resembling its
approach goal behavior. It is interesting that the imitator even was able to detect
not understandable behavior as such (light areas) and bootstrap the recognition pro-
cess as soon as it has reasonable explanations for the observed behavior data. This
missing link can now be used in the subsequent exploration processes to direct the
exploration towards it, while the understandable regions can be used, e.g., to adapt
the strategy towards more aggressively using them.

242

Fig. 5 Recognition results during the imitation process: B and G (dark area) denote the behavior in
time that the demonstrator has understood as equivalent to its approaching ball and approaching
goal behavior. The behavior between them (light area), lifting the ball, is recognized as a missing
link.

6 Conclusion

We have shown how sporadic imitation can be accomplished to guide the explo-
ration efforts towards more interesting spaces. For the first time it was shown how
inspired by the Viterbi algorithm the maximum likely path of states can be found
corresponding to the observation with full reference to the observers own already
learned low-level skill capabilities. With it, the observer could reliably explain the
demonstrator’s performance in terms of its own capabilities if it had skills that could
describe the observations or recognize intervals in the observation that could not be
understood and should be explored in more detail later on.

Future research should concentrate on more fine-grained dissemination of the
unknown regions. Using PbPP (stb |stat) (Eq. 6) the robot is not able e.g. to detect that
more than one action is necessary to be explored in order to accomplish the state
transition 〈stat ,stb〉. Here it would be helpful to look for consecutive ε-homogeneous
action sequences. Such a sequence would then contain actions of the same type with
probability 1− ε .

243Guiding Exploration by Combining Individual Learning and Imitation in MAS

Willi Richert, Oliver Niehörster, Florian Klompmaker

References

1. E. Alpaydin. Introduction To Machine Learning. MIT Press, 2004.
2. R. Bellman. Dynamic Programming. Courier Dover Publications, 2003.
3. Y. Bengio. Markovian models for sequential data. Neural Computing Surveys, 2:129–162,

1999.
4. A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal. Discovering optimal imitation

strategies. Robotics and Autonomous Systems, 47(2-3):69–77, 2004.
5. Billard, A. Learning motor skills by imitation: a biologically inspired robotic model, 2000.
6. Borenstein, E. and Ruppin, E. Enhancing autonomous agents evolution with learning by imi-

tation. In Second International Symposium on Imitation in Animals and Artifacts, 2003.
7. T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13:21–27, 1967.
8. Demiris, J. and Hayes, G. Imitation as a dual-route process featuring predictive and learning

components: a biologically-plausible computational model. In K. Dautenhahn and C. Nehaniv,
editors, Imitation in animals and artifacts, pages 327–361, Cambridge, MA, USA, 2002. MIT
Press.

9. Y. Gatsoulis, G. Maistros, Y. Marom, and G. Hayes. Learning to forage through imitation.
In Proceedings of the Second IASTED International Conference on Artificial Intelligence and
Applications (AIA2002), pages 485–491, Sept. 2002.

10. A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In International Conference on Robotics and Automation
(ICRA2002), 2002.

11. T. Inamura, Y. Nakamura, H. Ezaki, and I. Toshima. Imitation and primitive symbol acquisi-
tion of humanoids by the integrated mimesis loop. Robotics and Automation, 2001. Proceed-
ings 2001 ICRA. IEEE International Conference on, 4, 2001.

12. T. Inamura, I. Toshima, Y. Nakamura, and J. Saitama. Acquiring Motion Elements for Bidi-
rectional Computation of Motion Recognition and Generation. Experimental Robotics VIII,
2003.

13. M. J. Kochenderfer. Adaptive Modelling and Planning for Learning Intelligent Behaviour.
PhD thesis, School of Informatics, University of Edinburgh, 2006.

14. W. Richert, O. Lüke, B. Nordmeyer, and B. Kleinjohann. Increasing the autonomy of mobile
robots by on-line learning simultaneously at different levels of abstraction. In IEEE Interna-
tional Conference on Autonomic and Autonomous Systems (ICAS’08), March 2008.

15. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, 1998.

16. A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. Information Theory, IEEE Transactions on, 13(2):260–269, 1967.

244

Adelt, Philipp 105
Andreev, Rumen 223
Antonson, Erik 19
Bagherzadeh, Nader 199
Auf, Adam El Sayd 115
Bahn, Jun Ho 199
Buchty, Rainer 151
Dasgupta, Prithviraj 19
Defo, Bertrand 213
Dorigo, Marco 1
Esau, Natascha 187
Fulton, Rachel 163
Fusi, Nicoló 125
Gilbert, David 163
Golombek, Raphael 105
Gu, Xu .. 163
Hart, Emma .. 3
Heimfarth, Tales …...................... 45, 71
Heiner, Monika 163
Hone, Andy .. 3
Janacik, Peter ...…............................. 71
Karl, Wolfgang 151
Kaufmann, Paul 213
Kleinjohann, Bernd 105, 187
Kleinjohann, Lisa ………............... 187
Kneiper, Tobias 213
Klompmaker, Florian 233
König, Lukas 85
Kramer, David 151
Lessmann, Markus 177
Litza, Marek 115
Maehle, Erik 115
Merkle, Daniel 33
Meyer auf der Heide, Friedhelm ... 95
Middendorf, Martin33
Montealegre, Norma 137
Neal, Mark .. 3
Niehörster, Oliver 233
Orfanus, Dalimir 45

Author Index

Platzner, Marco 213
Rammig, Franz J. 137
Richert, Willi 105, 233
Robins, Adrian 3
Rosser, Susan 163
Scheidler, Alexander 33
Schneider, Barbara 95
Schlingmann, Sebastian 199
Schmeck, Hartmut 85
Stepney, Susan 3
Tahayori, Hooman…................ 125
Timmis, Jon 3
Trumler, Wolfgan…….............. 199
Trybilo, Maciej ……................. 163
Tyrrell, Andy ……....................... 3
Ungerer, Theo …...................… 199
Visconti, Andrea ….................. 125
Wacker, Arno 59
Wagner, Flávio Rech 45
Weis, Torban 59
Würtz, Rolf P. …………….… 177

246 Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

